Towards a Complete Census of the Compton-Thick AGN Population in the Local Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M . -
The Extragalactic Distance Scale
The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID -
Download Date 08/10/2021 22:33:47
Star forming regions and the IMF along the Hubble sequence Item Type text; Dissertation-Reproduction (electronic) Authors Bresolin, Fabio, 1966- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 08/10/2021 22:33:47 Link to Item http://hdl.handle.net/10150/288720 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text dvectty fix>m the origiiial or copy submitted. Thus, some thesis and dissertation copies are in typewriter &c^ while others may be from any type of computer printer. The quality of this reprodoction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverse^ afifect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, b^inning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. -
May 2016 BRAS Newsletter
May 2016 Issue th Next Meeting: Monday, May 9 at 7PM at HRPO (2nd Mondays, Highland Road Park Observatory) What's In This Issue? President’s Message Secretary's Summary of April Meeting Outreach Report Past Events Summary with Photos of” Rockin’ At The Swamp, Zippety Zoo Fest, Louisiana Earth Day Recent BRAS Forum Entries 20/20 Vision Campaign Geaux Green Committee Meeting Report Message from the HRPO International Astronomy Day Observing Notes: Hydra, the Water Snake, by John Nagle Newsletter of the Baton Rouge Astronomical Society May 2016 President’s Message We had a busy month with outreaches last month, and we have some major outreaches this month: The Transit of Mercury on Monday May 9th, from 6AM to 2PM at HRPO; International Astronomy Day (the 10th consecutive for us) on Saturday May 14th, 3PM to 11PM at HRPO; and Mars Closest Approach (to Earth) on Monday May 30th, 8PM to 12AM at HRPO. Volunteers are welcome. There was a good turnout at the April BRAS meeting with Dr. Giaime, Observatory Head of LIGO Livingston, as our guest speaker. His talk was very informative about the history of the search for gravity waves, Einstein’s theory on gravity waves, and what gravity waves are. The May BRAS meeting’s guest speaker will be Chris Johnson, of the LSU Astronomy Department, giving a presentation titled “Variability of Optical Counterparts to Selected X-ray Sources in the Galactic Bulge”. This is part of his Ph.D. research and has something to do with variable stars and what we can learn from space and ground based telescopes. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Intermediate-Mass Black Holes
Intermediate-Mass Black Holes Jenny E. Greene,1 Jay Strader,2 and Luis C. Ho3 1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; email: [email protected] 2Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China; Department of Astronomy, School of Physics, Peking University, Beijing 100871, China xxxxxx 0000. 00:1{69 Keywords Copyright c 0000 by Annual Reviews. All rights reserved black holes, active galactic nuclei, globular clusters, gravitational waves, tidal disruption, ultra-luminous X-ray sources Abstract We describe ongoing searches for intermediate-mass black holes with 5 MBH≈ 100 − 10 M . We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find: • Dynamical and accretion signatures alike point to a high fraction of 9 10 5 10 − 10 M galaxies hosting black holes with MBH ∼ 10 M . In contrast, there are no solid detections of black holes in globular clusters. • There are few observational constraints on black holes in any envi- 4 ronment with MBH ≈ 100 − 10 M . • Considering low-mass galaxies with dynamical black hole masses and constraining limits, we find that the MBH-σ∗ relation continues unbro- 5 ken to MBH∼ 10 M , albeit with large scatter. We believe the scatter is at least partially driven by a broad range in black hole mass, since the occupation fraction appears to be relatively high in these galaxies. • We fold the observed scaling relations with our empirical limits on occupation fraction and the galaxy mass function to put observational arXiv:1911.09678v2 [astro-ph.GA] 20 Mar 2020 bounds on the black hole mass function in galaxy nuclei. -
The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type
UC Irvine UC Irvine Electronic Theses and Dissertations Title The Structure and Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies Permalink https://escholarship.org/uc/item/3634g66n Author Carson, Daniel James Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Daniel J. Carson Dissertation Committee: Professor Aaron Barth, Chair Associate Professor Michael Cooper Professor James Bullock 2016 Portion of Chapter 1 c 2015 The Astronomical Journal Chapter 2 c 2015 The Astronomical Journal Chapter 3 c 2015 The Astronomical Journal Portion of Chapter 5 c 2015 The Astronomical Journal All other materials c 2016 Daniel J. Carson TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii CURRICULUM VITAE viii ABSTRACT OF THE DISSERTATION x 1 Introduction 1 2 HST /WFC3 data 9 2.1 SampleSelection ................................. 9 2.2 DescriptionofObservations . 10 2.3 DataReduction.................................. 14 3 Analysis of Structural Properties 17 3.1 Surface Brightness Profile Fitting . 17 3.1.1 PSFModels................................ 18 3.1.2 FittingMethod .............................. 19 3.1.3 Comparison with ISHAPE ......................... 21 3.1.4 1DRadialProfiles ............................ 22 3.1.5 Uncertainties in Cluster Parameters . 25 3.2 Results....................................... 29 3.2.1 SingleBandResults ........................... 29 3.2.2 PanchromaticResults........................... 40 3.2.3 Stellar Populations . 46 3.3 CommentsonIndividualObjects . 51 3.3.1 IC342................................... 51 3.3.2 M33 ................................... -
Hydra the Multi- Headed Serpent by Magda Streicher [email protected]
deep-sky delights Hydra the multi- headed Serpent by Magda Streicher [email protected] Hydra, the female Water kills her off- Snake, is the longest of spring. How- today’s 88 known constel- ever slightly la�ons, stretching from the so�er on the Libra up to the northern tongue is the Image source: Stellarium.org constella�on Cancer – more German name than 3% of the en�re night Wa s s e r s c h - sky (see starmap). It is quite lange. a challenge to deal with this The well-known open expansive constella�on in The northern part of the cluster NGC 2548, per- one ar�cle, especially as it constella�on is character- haps be�er known by contains excep�onally mag- ised by the magnitude 3 the name Messier 48, is nificent objects that make to 4 stars eta, sigma, delta, situated due west of al- a visit to the constella�on epsilon and zeta Hydrae, pha Hydrae right on the decidedly worthwhile. which could be seen as constella�on Monoceros making up the head shape boundary. Caroline Her- Of course, what makes with a sharp-pointed nose. schel and Charles Messier the constella�on all the independently discov- more interes�ng is the fact The star Alphard, also ered this large, bright and that it raises the ques�on, known as alpha Hydrae, loosely expanded cluster why the name – why a could easily seen as a yellow- of around 50 stars dis- female snake? According white diamond hanging on playing circles, pairs and to legend Hydra was the her slender neck (remem- triplets (see picture). -
Do Nuclear Star Clusters and Black Holes Follow the Same Host
Astronomy & Astrophysics manuscript no. erwin-gadotti˙nsc-smbh˙nobibtex c ESO 2018 November 8, 2018 Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?? Peter Erwin1;2 and Dimitri Alexei Gadotti3 1 Max-Planck-Institut fur¨ extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany 2 Universitats-Sternwarte¨ Munchen,¨ Scheinerstrasse 1, D-81679 Munchen,¨ Germany 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile Received ¡date¿ / Accepted ¡date¿ ABSTRACT Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies – including 2D bulge/disk/bar decompositions – shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC=M?; tot for NSCs in spirals (at least those with Hubble types Sc and later) is typically an order of magnitude smaller than the mass ratio MBH=M?; bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC–host galaxy correlation: galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later. Key words. galaxies: structure – galaxies: elliptical and lenticular, cD – galaxies: spiral – galaxies: kinematics and dynamics 1. -
Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?
Hindawi Publishing Corporation Advances in Astronomy Volume 2012, Article ID 946368, 11 pages doi:10.1155/2012/946368 Research Article Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations? Peter Erwin1, 2 and Dimitri Alexei Gadotti3 1 Max-Planck-Institut fur¨ Extraterrestrische Physik, Giessenbachstraβe, 85748 Garching, Germany 2 Universitats-Sternwarte¨ Munchen,¨ Scheinerstraβe 1, 81679 Munchen,¨ Germany 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile Correspondence should be addressed to Peter Erwin, [email protected] Received 6 October 2011; Revised 1 December 2011; Accepted 6 December 2011 Academic Editor: Isabelle Gavignaud Copyright © 2012 P. Erwin and D. A. Gadotti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M,tot for NSCs in spirals (at least those with Hubble types Sc and later) is typically an order of magnitude smaller than the mass ratio MBH/M,bul of SMBHs. -
The Black Hole Mass Function Derived from Local Spiral Galaxies
PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 789:124 (16PP),2014 JULY 10 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE BLACK HOLE MASS FUNCTION DERIVED FROM LOCAL SPIRAL GALAXIES BENJAMIN L. DAVIS1 , JOEL C. BERRIER1,2,5,LUCAS JOHNS3,6 ,DOUGLAS W. SHIELDS1,2, MATTHEW T. HARTLEY2,DANIEL KENNEFICK1,2, JULIA KENNEFICK1,2, MARC S. SEIGAR1,4 , AND CLAUD H.S. LACY1,2 Published in The Astrophysical Journal, 789:124 (16pp), 2014 July 10 ABSTRACT We present our determination of the nuclear supermassive black hole mass (SMBH) function for spiral galax- ies in the local universe, established from a volume-limited sample consisting of a statistically complete col- lection of the brightest spiral galaxies in the southern (δ< 0◦) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. A limiting luminos- ity (redshift-independent) distance, DL = 25.4 Mpc (z =0.00572) and a limiting absolute B-band magnitude, MB = −19.12 define the sample. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch angle distribution function may be useful in the study of the morphology of late-type galaxies. -
Arxiv:1010.5129V1 [Astro-Ph.CO] 25 Oct 2010 Ricue[Ne Include AGN
Accepted for publication in ApJ on 10 October 2010 A Preprint typeset using LTEX style emulateapj v. 2/16/10 THE MID-INFRARED HIGH-IONIZATION LINES FROM ACTIVE GALACTIC NUCLEI AND STAR FORMING GALAXIES⋆ Miguel Pereira-Santaella1,2, Aleksandar M. Diamond-Stanic3, Almudena Alonso-Herrero1,2,4, and George H. Rieke3 Accepted for publication in ApJ on 10 October 2010 ABSTRACT We used Spitzer/IRS spectroscopic data on 426 galaxies including quasars, Seyferts, LINER and H ii galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 µm and 24.3 µm (97.1 eV) and the [O IV]25.9 µm (54.9 eV) high- ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 µm (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the AGN dominates the [O IV] emission in most Seyfert galaxies, whereas star-formation adequately explains the observed [O IV] emission in optically classified H ii galaxies. Finally we computed photoionization models to determine the physical conditions of the narrow line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U −2 < -2.5 and the total hydrogen column density range is 20 < log nH (cm ) < 21.