The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type

Total Page:16

File Type:pdf, Size:1020Kb

The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type UC Irvine UC Irvine Electronic Theses and Dissertations Title The Structure and Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies Permalink https://escholarship.org/uc/item/3634g66n Author Carson, Daniel James Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Daniel J. Carson Dissertation Committee: Professor Aaron Barth, Chair Associate Professor Michael Cooper Professor James Bullock 2016 Portion of Chapter 1 c 2015 The Astronomical Journal Chapter 2 c 2015 The Astronomical Journal Chapter 3 c 2015 The Astronomical Journal Portion of Chapter 5 c 2015 The Astronomical Journal All other materials c 2016 Daniel J. Carson TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii CURRICULUM VITAE viii ABSTRACT OF THE DISSERTATION x 1 Introduction 1 2 HST /WFC3 data 9 2.1 SampleSelection ................................. 9 2.2 DescriptionofObservations . 10 2.3 DataReduction.................................. 14 3 Analysis of Structural Properties 17 3.1 Surface Brightness Profile Fitting . 17 3.1.1 PSFModels................................ 18 3.1.2 FittingMethod .............................. 19 3.1.3 Comparison with ISHAPE ......................... 21 3.1.4 1DRadialProfiles ............................ 22 3.1.5 Uncertainties in Cluster Parameters . 25 3.2 Results....................................... 29 3.2.1 SingleBandResults ........................... 29 3.2.2 PanchromaticResults........................... 40 3.2.3 Stellar Populations . 46 3.3 CommentsonIndividualObjects . 51 3.3.1 IC342................................... 51 3.3.2 M33 .................................... 52 3.3.3 NGC247 ................................. 53 3.3.4 NGC300 ................................. 53 3.3.5 NGC2403................................. 53 3.3.6 NGC2976................................. 54 ii 3.3.7 NGC3621................................. 55 3.3.8 NGC4244................................. 57 3.3.9 NGC4395................................. 59 3.3.10 NGC7793................................. 62 4 Analysis of Stellar Population Properties 63 4.1 GlobalSEDFits ................................. 63 4.1.1 GlobalSEDFittingMethod . .. .. 65 4.1.2 Results................................... 71 4.2 Spatially Resolved SED Fits . 81 4.2.1 Spatially Resolved SED Fitting Method . 81 4.2.2 Results................................... 83 4.3 Discussion..................................... 98 4.3.1 Comparison of Results from Global and Pixel-by-Pixel SED Fitting . 98 4.3.2 Comparison With Mass-to-Light Ratio vs. Color Relations . 100 4.3.3 CentralDensities ............................. 103 4.3.4 Old, Metal-Poor Populations . 106 4.3.5 Scaling Relations . 109 4.3.6 Mass-Metallicity Relation . 110 5 Conclusions 115 5.1 StructuralProperties .............................. 115 5.2 Stellar Population Properties . 117 5.3 FutureWork.................................... 119 Bibliography 121 A Developing and Testing the SED Fitting Code 128 A.1 ModelFittingProcedure ............................. 128 A.2 TestingtheSEDFittingMethod . 131 A.2.1 TestsonSingle-AgeModels . 133 A.2.2 Mock Catalog Based on Walcher 2006 Sample . 136 iii LIST OF FIGURES Page 2.1 HST/WFC3 filter throughput curves . 13 2.2 GrayscaleimagesofNCs ............................. 15 2.3 ColorcompositeimagesofNCs ......................... 16 3.1 TinyTim modelPSFs............................... 18 3.2 F814W GALFIT results .............................. 23 3.5 F814W GALFIT result(continued) ........................ 24 3.6 F814Wradialsurfacebrightnessprofiles . ... 26 3.6 F814W radial surface brightness profiles (continued) . ....... 27 3.6 F814W radial surface brightness profiles (continued) . ....... 28 3.7 Histograms of surface brightness profile parameters . ....... 36 3.8 ComparisonofS´ersicprofiles. 37 3.9 NC radius-luminosity relation . 38 3.10 NC vs. host luminosity relation . 39 3.11 NCeffectiveradiusvs.wavelength. .. 41 3.12 NCaxisratiovs.wavelength. 43 3.13NCvs.hostaxisratio............................... 45 3.14NCSEDs ..................................... 47 3.15 F336W F438W vs. F547M F127Mcolors ................. 49 3.16 F438W − F814W vs. F547M − F814Wcolors ................. 50 − − 3.17 NGC 4244 S´ersic parameters vs. wavelength . ..... 58 3.18 NGC4395componentSEDs ........................... 61 4.1 SSPmodelspectra ................................ 66 4.2 Example cumulative likelihood distribution . 69 4.3 Globalbest-fitSEDs ............................... 72 4.4 NCStarFormationRates ............................ 76 4.5 Pixel-by-pixel SED fit results . 84 4.5 Pixel-by-pixel SED fit results (continued) . ... 85 4.6 Reddeningmaps ................................. 86 4.7 Example radial profile of MGE models . 88 4.8 Deprojected Central Density vs. Inclination . .... 94 4.9 Deprojected density profiles in the z =0plane................. 95 4.10 F547M F814WcolormapofNGC3621 . 98 − 4.11 NCmass-hostgalaxymassrelation . 111 iv 4.12NCsize-NCmassrelation ............................ 112 4.13 NC metallicity vs. host galaxy stellar mass . 113 A.1 χ2 vs.numberofSSPcomponents. 130 A.2 SSPtemplatemismatches ............................ 132 A.3 Errorinmassestimatesvs.SSPage. 134 A.4 SSPdegeneracies ................................. 135 A.5 ResultsoftestsonmockSEDcatalog . 138 A.6 DegeneraciesfromtestsonmockSEDcatalog . 140 v LIST OF TABLES Page 2.1 TheGalaxySample................................ 10 2.2 HST /WFC3FilterProperties&ExposureTimes . 12 3.1 Best-fit surface bightness profile parameters . ...... 31 4.1 ParametersDerivedFromGlobalSEDFits . 73 4.2 Fractional Weights of SSPs in the Fit . 78 4.3 ComparisontoDynamicalMassEstimates . 80 4.4 Definitions of Surface Density Models . 88 4.5 Multi-Gaussian Expansion Models . 90 4.6 AgeRadialProfileSlopes............................. 97 4.7 Comparison of Resolved and Unresolved Mass and Age Estimates . ..... 99 4.8 Comparison With Mass Estimates Derived From MLCRs . 102 4.9 CentralSurfaceDensities. 105 4.10 Old,Metal-PoorFractions . 108 vi ACKNOWLEDGMENTS Support for program GO-12163 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Re- search in Astronomy, Inc., under NASA contract NAS 5-26555. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propul- sion Laboratory, California Institute of Technology, under contract with the National Aero- nautics and Space Administration. I acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). Some of the text of this dissertation is a reprint of the material as it appears in the Astronom- ical Journal. Permission to use copyrighted material has been granted by the Astronomical Journal. The co-authors listed in this publication directed and supervised research which is the basis for the dissertation. I would like to thank my research collaborators Anil Seth, Mark den Brok, Luis Ho, Jenny Greene, Michele Cappellari, and Nadine Neumayer. I would like to thank my advisor, Aaron Barth, for years of guidance and support, as well the members of the Barth research group past and present, especially Liuyi Pei, Ben Boizelle, Jonelle Walsh, Carol Hood, Daeseong Park, and Vivian U. None of this would have been possible without the love and support of my wonderful family and friends. I am grateful for the encouragement my parents Tom and Judy Carson, my sister Nora Carson, my (soon to be) brother-in-law Jordan David, and my dear friends Paul Mockus, Alex Kirschenbaum, Beverly Tsai, Jay Mata, Jessica Mata, Steve Buchsbaum, Max Weidmann, Calvin Patel, Emon Heidari, and Coral Wheeler. vii CURRICULUM VITAE Daniel J. Carson EDUCATION Doctor of Philosophy in Physics & Astronomy 2016 University of California, Irvine Irvine, CA Master of Science in Physics 2011 University of California, Irvine Irvine, CA Bachelor of Science in Physics, Minor in Mathematics 2010 University of Illinois at Urbana-Champaign Urbana-Champaign, IL RESEARCH EXPERIENCE Graduate Student Researcher 2011–2016 University of California, Irvine Irvine, California Undergraduate Researcher 2009–2010 University of Illinois at Urbana-Champaign Urbana-Champaign, Illinois TEACHING EXPERIENCE Teaching Associate 2015–2016 University of California, Irvine Irvine, CA Tutor, Minority Sciences Program 2014–2015 University of California, Irvine Irvine, CA Teaching Assistant 2010–2011 University of California, Irvine Irvine, CA viii FIRST AUTHOR REFEREED JOURNAL PUBLICATIONS The Structure of Nuclear Star Clusters in Late-type Spi- 2015 ral Galaxies from Hubble Space Telescope/Wide Field Camera 3 Imaging The Astronomical Journal FIRST AUTHOR PAPERS IN PREPARATION The Stellar Populations of Nuclear Star Clusters in 2016 Late-type Spiral Galaxies from Hubble Space Tele- scope/Wide Field Camera 3 Imaging OTHER REFEREED JOURNAL PUBLICATIONS CONTRIBUTED TO Measuring the Mass of the Central Black Hole in the 2015 Bulgeless Galaxy NGC 4395 from Gas Dynamical Mod- eling The Astrophysical Journal Reverberation Mapping of the KEPLER Field AGN 2014 KA1858+4850 The Astrophysical Journal A Search for Optical Variability of Type 2 Quasars in 2014 SDSS Stripe 82 The Astrophysical Journal The Very
Recommended publications
  • R" ^ the Astrophysical Journal, 369:79-105,1991
    O'! r" ^ The Astrophysical Journal, 369:79-105,1991 March 1 © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. O'! \O'! 1 A DEEP IMAGING AND SPECTROSCOPIC SURVEY OF FAINT GALAXIES S. J. Lilly,1 L. L. Cowie,1 and J. P. Gardner1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 Received 1990 May 9 ; accepted 1990 August 22 ABSTRACT The results of a deep imaging and spectroscopic optical survey are presented. Three small areas of sky at 13 h, 17 h, and 22 h have been imaged to faint levels in four passbands (U', B, V, and I) in the optical window. These reach approximately 27th magnitude for galaxy images, at which point the surface density of galaxies is 5 -2 roughly 2.5 x 10 deg . A complete catalog of objects to JAB ~ 24.5 is provided as the basis for future studies of the faint extragalactic population. Spectroscopic observations of a small but essentially complete sample of galaxies in and around the 22 h field have yielded redshifts for a high fraction of galaxies with Bab <24.1. Detailed comparison of our deep images with similar data from other observers shows some broad similarities but also some significant differences. In particular, our faintest galaxies are in general con- siderably redder, and the fraction of galaxies with colors that are unrepresentable by normal galaxies is corre- spondingly much smaller. We also see evidence for a decline in the steep slope of the B-band number counts for magnitudes fainter than B ~ 24.
    [Show full text]
  • Hierarchical Star Formation in Nearby Galaxies? M
    Astronomy & Astrophysics manuscript no. Rodriguez_2020_corr ©ESO 2020 October 28, 2020 Hierarchical star formation in nearby galaxies? M. J. Rodríguez1??, G. Baume1; 2 and C. Feinstein1; 2 1 Instituto de Astrofísica de La Plata (CONICET-UNLP), Paseo del bosque S/N, La Plata (B1900FWA), Argentina, 2 Facultad de Ciencias Astronómicas y Geofísicas - Universidad Nacional de La Plata, Paseo del bosque S/N, La Plata (B1900FWA), Argentina Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Aims. The purpose of this work is to study the properties of the spatial distribution of the young population in three nearby galaxies in order to better understand the first stages of star formation. Methods. We used ACS/HST photometry and the "path-linkage criterion" in order to obtain a catalog of young stellar groups (YSGs) in the galaxy NGC 2403. We studied the internal distribution of stars in these YSGs using the Q parameter. We extended these analyses to the YSGs detected in in NGC 300 and NGC 253 our previous works. We built the young stars’ density maps for these three galaxies. Through these maps, we were able to identify and study young stellar structures on larger scales. Results. We found 573 YSGs in the galaxy NGC 2403, for which we derived their individual sizes, densities, luminosity function, and other fundamental characteristics. We find that the vast majority of the YSGs in NGC 2403, NGC 300 and NGC 253 present inner clumpings, following the same hierarchical behavior that we observed in the young stellar structures on larger scales in these galaxies. We derived values of the fractal dimension for these structures between ∼ 1.5 and 1.6.
    [Show full text]
  • Constructing a Galactic Coordinate System Based on Near-Infrared and Radio Catalogs
    A&A 536, A102 (2011) Astronomy DOI: 10.1051/0004-6361/201116947 & c ESO 2011 Astrophysics Constructing a Galactic coordinate system based on near-infrared and radio catalogs J.-C. Liu1,2,Z.Zhu1,2, and B. Hu3,4 1 Department of astronomy, Nanjing University, Nanjing 210093, PR China e-mail: [jcliu;zhuzi]@nju.edu.cn 2 key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, PR China 3 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, PR China 4 Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China e-mail: [email protected] Received 24 March 2011 / Accepted 13 October 2011 ABSTRACT Context. The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. An unrigorous transformation was adopted by the Hipparcos group to transform the Galactic coordinate system from the FK4-based B1950.0 system to the FK5-based J2000.0 system or to the International Celestial Reference System (ICRS). For more than 50 years, the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On the basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. Aims. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two-Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center.
    [Show full text]
  • A Dusty, Normal Galaxy in the Epoch of Reionization
    A dusty, normal galaxy in the epoch of reionization Darach Watson1, Lise Christensen1, Kirsten Kraiberg Knudsen2, Johan Richard3, Anna Gallazzi4,1, and Michał Jerzy Michałowski5 Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-UV imaging1. But it has proved difficult for existing spectrographs to characterise them in the UV2,3,4. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at z = 3.25, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch6,7,8. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5±0.2 from a spectroscopic detection of the Lyα break. A1689-zD1 is representative of the star-forming population during reionisation9, with a total star- –1 formation rate of about 12 M yr . The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7, in spite of the very short time since they first appeared.
    [Show full text]
  • The Local Galaxy Volume
    11-1 How Far Away Is It – The Local Galaxy Volume The Local Galaxy Volume {Abstract – In this segment of our “How far away is it” video book, we cover the local galaxy volume compiled by the Spitzer Local Volume Legacy Survey team. The survey covered 258 galaxies within 36 million light years. We take a look at just a few of them including: Dwingeloo 1, NGC 4214, Centaurus A, NGC 5128 Jets, NGC 1569, majestic M81, Holmberg IX, M82, NGC 2976,the unusual Circinus, M83, NGC 2787, the Pinwheel Galaxy M101, the Sombrero Galaxy M104 including Spitzer’s infrared view, NGC 1512, the Whirlpool Galaxy M51, M74, M66, and M96. We end with a look at the tuning fork diagram created by Edwin Hubble with its description of spiral, elliptical, lenticular and irregular galaxies.} Introduction [Music: Johann Pachelbel – “Canon in D” – This is Pachelbel's most famous composition. It was written in the 1680s between the times of Galileo and Newton. The term 'canon' originates from the Greek kanon, which literally means "ruler" or "a measuring stick." In music, this refers to timing. In astronomy, "a measuring stick" refers to distance. We now proceed to galaxies more distant than the ones in our Local Group.] The Local volume is the set of galaxies covered in the Local Volume Legacy survey or LVL, for short, conducted by the Spitzer team. It is a complete sample of 258 galaxies within 36 million light years. This montage of images shows the ensemble of galaxies as observed by Spitzer. The galaxies are randomly arranged but their relative sizes are as they appear on the sky.
    [Show full text]
  • Publications of the Astronomical Society of the Pacific Vol. 109 1997
    Publications of the Astronomical Society of the Pacific Vol. 109 1997 July No. 737 Publications of the Astronomical Society of the Pacific 109: 745-758, 1997 July Invited Review Paper Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed Greg Bothun Department of Physics, University of Oregon, Eugene, Oregon 97403 Electronic mail: [email protected] Chris Impey Steward Observatory, University of Arizona, Tucson, Arizona 85721 Electronic mail: [email protected] Stacy McGaugh Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20005 Electronic mail: [email protected] Received 1997 February 12; accepted 1997 April 29 ABSTRACT. In 20 years, low-surface-brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night-sky background is a strong testament to the severity of surface-brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble sequence of spirals. The two most important are (1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular-cloud environment, (2) they are embedded in dark-matter halos which are of lower density and more extended than the halos around high-surface-brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark-matter dominated at all radii and show a systematic increase in M/L with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at ζ = 0.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • The Large Scale Universe As a Quasi Quantum White Hole
    International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience.
    [Show full text]
  • Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
    Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY .......................
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]