Atlases and Catalogues a Revised Shapley Ames Catalog, 195, 258

Total Page:16

File Type:pdf, Size:1020Kb

Atlases and Catalogues a Revised Shapley Ames Catalog, 195, 258 Index Atlases and Catalogues Virgo Cluster Catalogue, 396 A Revised Shapley Ames Catalog, 195, 258 X-ray Catalog and Atlas of galaxies, 308 Atlas de Galaxias Australes, 339 Atlas of Peculiar Galaxies, 191, 195, 413 Bright Galaxy Catalog, 386 Instruments Catalog of Galaxies and Cluster of 2dF (AAT), 453 Galaxies, 416 6dF (AAT), 453 Catalog of Isolated Galaxies (CIG), 23, AAOMEGA (AAT), 456 271, 416, 417, 425 ACIS, 311 Catalog of Isolated Triplets of Galaxies ACS, 56, 143, 484 (CTG), 23 COS, 56, 437 Catalog of Pair Galaxies (CPG), 23, 271, DEIMOS (Keck), 453 411 DIRBE, 58 Catalogue of Isolated Pairs, 460 FIRAS, 58 Catalogue of Southern Peculiar Galaxies FLAMES (VLT), 453 and Associations, 196, 233, 459 FMOS (Subaru), 454 Extragalactic Distance Data Base FORCE (VLT), 453 Catalogue, 163 FORS, 32 General Catalogue of Nebulæ and Clusters, FOS, 437 384 GHRS, 437 Hipparcos Second Catalog Release, 699 GMACS (Magellan), 453 Morphologicheskji Katalog Galaktik, 22, GMOS (Gemini), 453 191, 385 GRAVITY, 746 Nearby Galaxies Catalogue, 414 HIFI, 443 New General Catalog, 384 HRI, 445 Southern Catalogue of Isolated Pairs, 411 Hyper Supreme Cam, 47 The Arp Atlas of Peculiar Galaxies, 271 IPC, 445 The Carnegie Atlas of Galaxies, 195, 198, IPCS, 26 200, 287, 519 IRAC, 442 The Color Atlas of Galaxies, 197 IRS, 442 The Reference Catalogue of Bright ISAAC, 32 Galaxies, 195 ISO-CAM, 442 Uppsala General Catalogue of Galaxies, ISO-LWS, 442 384, 414, 425 ISO-PHOT, 442 © Springer International Publishing Switzerland 2016 769 M. D’Onofrio et al. (eds.), From the Realm of the Nebulae to Populations of Galaxies, Astrophysics and Space Science Library 435, DOI 10.1007/978-3-319-31006-0 770 Index ISO-SWS, 442 Babcock H., 71 KMOS (VLT), 454 Bahcall John, 109 LRIS (Keck), 453 Bannier J.H., 28 Manga (SDSS), 454 Barbanis Basil, 105 MATISSE, 746 Bardeen James, 247 Mega Cam, 143 Barnard E.E., 96 Mega Prism, 143 Barnes Joshua, 514, 749 MEGAPRIME (CFHT), 406 Bate Matthew, 612 MIPS, 442 Bedke John, 198, 287 MOS (CFHT), 453 Bekenstein Jacob, 565 Mosfire (Keck), 454 Belokurov Vasilji, 144 NICMOS, 261, 485 Bender Ralf, 284 OM, 439 Bensby Thomas, 121 PACS, 443 Bentley Richard, 107 SAMI (AAO), 454 Bernheimer Walter, 431 SCUBA, 27 Bershady Matthew, 279 SINFONI, 32, 484 Bertin Giuseppe, 541, 567 SINFONI (VLT), 458 Bertola Francesco, 201 SPIRE, 443 Bethe Hans, 114, 586 STIS, 437 Bien Reinhold, 560 Suprime Cam, 32, 40, 47 Binggeli Bruno, 396, 459 UVES, 326 Binney James, 105, 118, 541, 567, 645 UVOT, 439 Blaauw Adriaan, 28 VIMOS, 32 Bland-Hawthorn Joss, 110 WEAVE, 458 Block David, 193 WFPC2, 56, 143 Blumenthal George, 119 WFPC3, 56 Boily Christian, 563 Bok Bart, 411 Boksemberg Alec, 26 Names Boltzmann Ludwig, 540 Aarseth Sverre, 560, 621 Borucki William J., 50 Abraham Roberto, 196, 484 Boselli Alessandro, 429 Adams Walter, 10, 103, 105, 113 Bosma Albert, 549 Adanson Michel, 228 Bothun Gregory, 220 Afanasiev E.A., 21 Bottinelli Lucette, 72, 424 Afanasiev V.L., 25 Bourgeois Paul, 28 Aguero Estela, 36 Bovy Jo, 121 Akahane Kenji, 43 Bowen I.S., 71 Alexander Stephen, 13 Bruzual Gustavo, 35, 37 Ambartsumian Victor, 20 Burbidge Geoffrey, 16, 17, 73, 75 Angus Garry, 565 Burbidge Margaret, 16, 17, 75 Aragò François, 3 Burstein David, 280, 283 Aragon-Calvo Miguel, 606 Bush Vannevar, 14 Arkhipova V.P., 22 Buta Ronald, 191, 200, 281, 389 Armandroff Taft, 136 Caipin Liu, 725 Arnett David W., 629 Campbell William, 105 Arnett William David, 650 Caon Nicola, 202, 340 Arp Halton, 71, 73, 75, 77, 191, 195, 233, Capaccioli Massimo, 72, 201, 202, 340, 269, 413, 459, 512 459 Athanassoula Lia, 205 Carlberg Ray, 199, 589 Audouze Jean, 650 Carnegie Andrew, 26 Baade Walter, 7, 12–16, 28, 79, 111, Carollo Marcella, 123 113–115, 141, 200, 218, 269, 325, Carranza Gustavo, 36 740, 745, 759 Carraro Giovanni, 595 Index 771 Carter David, 750 Eddington Arthur, 102, 104, 107 Chamberlain Joseph, 115 Efstathiou George, 279, 586, 591 Chandrasekhar Subrahmanyan, 536, 567 Eggen Olin, 107, 116, 326, 586, 591, 745 Charlier Carl, 410 Einasto Jaan, 23 Charlot Stephane, 35 Einstein Albert, 14, 71, 548 Chernin Arthur, 23 Eisenstein Daniel, 453 Chikada Yoshihiro, 42 Elmegreen Bruce, 198, 484, 615 Chincarini Guido, 429, 431 Ewen H., 17 Chiosi Cesare, 595 Falcon-Barroso Javier, 201, 206 Cho Se Hyung, 725 Fall Michael, 586, 591 Chwolson Orest, 298 Fall Mike, 279 Clemens Marcel, 461 Famaey Benoit, 566 Cole Shaun, 453 Faraday Michael, 321 Combes Françoise, 205, 283 Fermi Enrico, 14 Conselice Christopher, 196, 484, 485 Ferreras Ignacio, 627 Cortesi Luca, 202 Field G. B., 128 Corwin Harold, 195, 389 Findlay John, 18, 430 Cowie Lennox, 484 Fish Robert, 277 Cox Thomas, 172 Fisher Richard, 433 Curtis Heber, 3, 5, 17, 112, 193 Fizeau Hipoolyte, 746 D’Ercole Annibale, 643 Ford Holland, 250 D’Onofrio Mauro, 202, 249, 340, 343 Forman William, 424 Da Costa Gary, 136 Fouqué Pascal, 389 Dabringhausen Jörg, 613 Fowler William, 75 Daguerre Louis, 3 Freedman Wendy, 133, 136 Danjon André-Louis, 28 Freeman Kenneth, 110, 276 Dariush Ali, 759 Fridmann Alexander, 71 Davies Rod, 424 Friedman Aleksandr, 410 Davis Marc, 332, 424 Frogel Jay, 112 De Grijs Richard, 131 Frost Edwin, 105 de Sitter Willem, 71, 103 Günther Wuchterl, 612 de Vaucouleurs Antoinette, 74, 191, 195 Galilei Galileo, 94, 740 de Vaucouleurs Gérard, 72 Gamow George, 17 de Vaucouleurs Gerard, 16, 72, 74, 191, Garnier Robert, 390 193, 195, 200, 204, 218, 270, 277, Gauss Carl Friedrich, 112 287, 325, 339, 384, 386, 389, 431, Gavazzi Giuseppe, 401, 423, 429, 459 750 Gehrels Neil, 535 de Zeeuw Tim, 541, 568 Genzel Reinhard, 484, 746 Debattista Victor P., 282 Gerola Humberto, 198 Denisuyk, E.A., 21 Giacconi Riccardo, 31, 45, 60 Dennison E.W., 71 Gillett Fred, 741 Dettmar R., 204 Gilmore Gerald, 109, 117, 280 Deutsch A.J., 71 Giovanardi Carlo, 428 Dibai Ernst, 21 Giovanelli Riccardo, 425 Disney Mike, 220, 277, 549 Goldreich Peter, 108 Djorgovski George, 200, 541 Gott Richard III, 414 Doroshkevich A.G., 23 Gouguenheim Lucienne, 72, 424 Dostal V.A., 22 Gray Jim, 36 Dottori Horacio, 36 Greenberg J. M., 128 Dressler Alan, 200, 283, 424 Greenstein J., 71 Dreyer John, 141, 193, 384 Grindlay Jonathan, 50 Duc Pierre-Alain, 750 Gunn Jim, 279 Easton Cornelius, 13, 96 Häring Nadine, 249 Eckart Andreas, 746 Hagihara Yusuke, 38 772 Index Hale George Ellery, 4, 6, 71 Kant Immanuel, 17 Hanbury Brown Robert, 746 Kapteyn Jacobus, 5, 9, 12, 96, 101–105, Harwit Martin, 49 107, 111, 276, 739 Hatanaka Takeo, 43 Karachentsev Igor, 22, 23, 142–144, 411, Hayakawa Sachio, 42, 46 431 Hayashi Chushiro, 38, 42, 46 Karachentseva Valentina, 22, 411, 425, 426 Haynes Martha, 430 Karachetsev Igor, 77 Heckman Otto, 28 Kawaguchi Norio, 48 Helou George, 389, 428 Keeler John E., 3 Hensler Gerhard, 563 Keenan Philip Childs, 115 Hernquist Lars, 514 Kenney Jeff, 517 Herschel Caroline, 193 Kennicutt Robert, 125, 455, 631 Herschel John, 3, 26, 193, 384 Kent Brian, 435 Herschel William, 3, 5, 12, 70, 193, 384 Kent Steve, 332 Hertzsprung Ejnar, 101, 586 Kerr F.J., 17 Hewitt Jackie, 428 Kerr Frank, 109 Hickson Paul, 75, 414, 460 Kerr Roy, 535 Hindman J.V., 17, 97 Khachikian Edward, 21 Hitabayashi Hisashi, 48 King Ivan, 345 Ho Luis, 459 Klin Frantisek, 298 Ho Paul, 725 Knox-Shaw H., 199 Hobsbawm Eric, 82 Kobayashi Hideyuki, 48 Hodge Paul, 218 Koda Jun, 525 Hoffman Lyle, 428 Kodaira Keiichi, 46 Holmberg Erik, 64, 77, 195, 325, 385, 411, Koo David, 481 412, 460, 511 Koopmann Rebecca, 435 Hoyle Fred, 17, 75 Koopmans Leon, 299 Hu Wayne, 484 Koposov S., 144 Hubble Edwin Powell, 4, 7, 10, 12, 15, 17, Kormendy John, 125, 198, 199, 204, 219, 72, 78, 112, 131, 166, 190, 193, 195, 280, 283, 597 199, 218, 234, 287, 325, 339, 410, Kozai Yoshihide, 46 587, 740 Kraft R., 71 Huchra John, 424 Krasnogorskaya A.A., 22 Huffer Charles Morse, 11, 13, 97 Kron R., 481 Humason Milton, 325, 481 Kroupa Pavel, 222, 627 Hypparchus of Nicea, 382 Kudrya Y.N., 145 Ibata Rodrigo, 123 Kuijken Konrad, 109, 125 Impey Chris, 220 Kunz Jacob, 12, 14 Inatani Juri, 44 Kuzmin Rodion, 568 Inoue Makoto, 48 Läsker Ronald, 252 Iye Masanori, 47 Lüghausen Fabian, 566 Jacobi Carl, 107 Lütticke R., 204 James Jeans, 104 La Barbera Francesco, 627 Jansky Karl, 17 Labeyrie Antoine, 746 Jeans James, 5, 10, 106, 107, 166, 191, 193, Lacey Cedric, 118 588 Lagrange Joseph-Louis, 107 Jones Christine, 424 Landi Jeorge, 36 Jones L.R., 759 Laplace Pierre Simon, 70 Joy Alfred, 103 Larson Richard, 116, 271, 413, 588 Jugaku Jun, 45 Latham David, 424 Kaazik A., 23 Lauberts A., 385 Kaifu Norio, 43 Laurikainen Eija, 203 Kalamees P., 23 Leavitt Henrietta, 6, 132 Kalnajs Agris, 108 Lee M. G., 136 Index 773 Leigh Nathan, 613 Middelburg Frank, 80 Leighton R., 71 Mikkola Seppo, 621 Lemaître George, 71 Milgrom Moti, 564, 626 Lequeux James, 35 Minkowski Hermann, 564 Lewis Murray, 424 Minkowski Rudolph, 14, 16, 481 Li A., 128 Mirabel Felix, 221 Lick James, 26 Miyazaki Satoshi, 47 Liivamägi J.L., 607 Morgan William Wilson, 195 Lin C.C., 197, 285, 290 Morgan William Wilson, 13, 97, 325 Lindblad Bertil, 9, 11, 28, 96, 103, 197, Morimoto Masaki, 43, 48 286, 290, 511 Mountain Matt C., 741 Lindegreen Lennart, 699 Mulchaey John, 759 Linnaeus Carl, 226, 228 Muller André, 29 Lipovetsky Valentin, 21, 25 Munch Guido, 71 Llinares Claudio, 565 Nair P., 196 Loeb Abraham, 172 Nelson Nils-Peter, 589 Londrillo Pasquale, 567 Newton Isaac, 107, 521, 540, 547, 549 Longair Malcom, 82, 742 Nicolaci da Costa Luiz Alberto, 36 Lorentz Hendrik, 535 Nilson Peter, 384, 385, 425, 427 Lotz Jennifer, 484 Nipoti Carlo, 567 Lundmark Knut, 384, 385, 411 Nissen P.
Recommended publications
  • Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
    A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str.
    [Show full text]
  • Distances to Local Group Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • The Centre of the Active Galaxy NGC 1097
    Figure 4: Relative map- References ping speed of SCOWL 1000000 versus the ALMA Com- The OWL Instrument Concept Studies have been pact Configuration. published as ESO internal reports. They can be ob- tained from the PI’s or ESO. 10000 (1) D’Odorico S., Moorwood A. F .M., Beckers, J. 1991, Journal of Optics 22, 85 (2) CODEX, Cosmic Dynamics Experiment, OWL–CSR-ESO-00000-0160, October 2005 100 (3) T-OWL, Thermal Infrared Imager and Spectrograph for OWL, OWL–CSR-ESO-00000-0161, October 2005 (4) QuantEYE, OWL–CSR-ESO-00000-0162, October 0 2005 (5) SCOWL, Submillimeter Camera for OWL; OWL–CSR-ESO-00000-0163, September 2005 (6) MOMFIS, Multi Object Multi Field IR Spectrograph, OWL–CSR-ESO-00000-0164, September 2005 0.01 (7) ONIRICA, OWL NIR Imaging Camera, OWL–CSR-ESO-00000-0165, October 2005 (8) EPICS, Earth-like Planet Imaging Camera and Spectrograph, OWL–CSR-ESO-00000-0166, 0.0001 October 2005 850 450 350 850 450 350 λ(µm) (9) HyTNIC, Hyper-Telescope Near Infrared Camera, ALMA Compact SCOWL OWL–CSR-ESO-00000-0167, October 2005 The Centre of the Active Galaxy NGC 1097 Near-infrared images of the active galaxy A colour-composite image of the cen- NGC 1097 have been obtained by a team of tral 5 500 light-years wide region of astronomers1 using NACO on the VLT. Located the spiral galaxy NGC 1097, obtained with NACO on the VLT. More than at a distance of about 45 million light years in 300 star-forming regions – white spots the southern constellation Fornax, NGC 1097 is in the image – are distributed along a relatively bright, barred spiral galaxy seen a ring of dust and gas in the image.
    [Show full text]
  • X-Ray and Gamma-Ray Variability of NGC 1275
    galaxies Article X-ray and Gamma-ray Variability of NGC 1275 Varsha Chitnis 1,*,† , Amit Shukla 2,*,† , K. P. Singh 3 , Jayashree Roy 4 , Sudip Bhattacharyya 5, Sunil Chandra 6 and Gordon Stewart 7 1 Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India 2 Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India 3 Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India; [email protected] 4 Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India; [email protected] 5 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; [email protected] 6 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa; [email protected] 7 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (A.S.) † These authors contributed equally to this work. Received: 30 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission.
    [Show full text]
  • Probing the Birth of Super Star Clusters
    Probing the Birth of Super Star Clusters Kelsey Johnson With help from: Alan Aversa, Crystal Brogan, Rosie Chen, Jeremy Darling, Miller Goss, Remy Indebetouw, Amanda Kepley, Chip Kobulnicky, Amy Reines, Bill Vacca, David Whelan NOAO Summer Program 1995 Remy Regina Indebetouw Jorgenson Angelle Tanner Seth Redfield Reed Riddle Kelsey Johnson Amy Winebarger Super Star Clusters: Cluster formaon in the Extreme • Plausibly proto‐globular clusters • Formaon common in early universe • Impact on the ISM & IGM 1) What physical conditions are required to form these clusters? 2) Does this extreme environment affect affect the SF process itself? Strategy: Look for sources with similar SEDs to Ultracompact HII regions Compact, “inverted spectrum” sources Very dense HII regions non-thermal Sn free-free optically-thick free-free 100 1 l (cm) Wood & Churchwell 1989 II ZW 40 NGC 4490 NGC 4449 Aversa et al.sub Image credit: Michael Gariepy/ Kepley et al. in prep, Beck et et al. Adam Block/NOAO/AURA/NSF Reines et al. 08 NGC 2537 NGC 5253 NGC 3125 Aversa et al. sub Turner et al. 00 Aversa et al. sub Image Credit: Sloan Digital Sky Survey Image credit: Angel Lopez-Sanchez Haro 3 IC 4662 NGC 4214 Beck et al. 00 Image Credit: NASA and Hubble Heritage Team (STScI) Johnson et al. 03 Johnson et al. 04 Natal Clusters are rare! (i.e. short‐lived) Recent radio survey of nearby “star-forming” galaxies: Only 9/28 have detected thermal sources Aversa, Johnson, et al.submitted Henize 2-10 ACS optical, Vacca et al. in prep NICMOS Pa a, Reines et al.
    [Show full text]
  • PMAS-PPAK Integral-Field Spectroscopy of Nearby Seyfert And
    PMAS-PPAK integral-field spectroscopy of nearby Seyfert and normal spiral galaxies I. The central kiloparsecs of NGC 4138 Bartakov´ a´ T.1, Jungwiert B.2,3,Sanchez´ S. F.4,5, Stoklasova´ I.2, Emsellem E.6, Ferruit P.7, Jahnke K.8, Mundell C.9, Tacconi-Garman L. E.6, Vergani D.10, Wisotzki L.11 1 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Brno, Czech Republic; 2 Astronomical Institute, Academy of Science of the Czech Republic, Prague, Czech Republic; 3 Astronomical Institute of the Charles University in Prague, Czech Republic; 4 Centro de Estudios de F´ısica del Cosmos de Aragon´ (CEFCA), Teruel, Spain; 5 Centro Astronomico´ Hispano-Aleman,´ Calar Alto, Almer´ıa, Spain; 6 European Southern Observatory, Garching, Germany; 7 CRAL-Observatoire de Lyon, Saint-Genis-Laval, France; 8 Max-Planck-Institut fur Astronomie, Heidelberg, Germany; 9 Astrophysics Research Institute, Liverpool John Moores University, United Kingdom; 10 INAF-Osservatorio Astronomico di Bologna, Italy; 11 Astrophysical Institute Potsdam, Germany. email: [email protected] Project overview These peculiarities are suspected to be related to a minor merger, however they could also be related to a destroyed Ratio Ha/Hb |2.5/*| Ratio [SII]6717/[SII]6731 |1.15/2.0| We study properties of ionized gas, gas/stellar kinematics bar, or a combination of both. New studies are necessary 30 6 30 2 5.5 1.9 and stellar populations in central regions (a few inner 20 20 to understand the galaxy history and mass transfer within 1.8 5 kiloparsecs) of four pairs of nearby Seyfert (NGC 5194, 10 10 1.7 the inner kiloparsecs.
    [Show full text]
  • The Radio Continuum View of Centaurus Acentaurus A
    TheThe radioradio continuumcontinuum viewview ofof CentaurusCentaurus AA Ron Ekers CSIRO The Many Faces of Centaurus A Sydney, 29 June 2009 Ilana's composite Morganti et al. 1999 9° 10' Burns et al. xx image courtesy Norbert Junkes (MPIfR) WhyWhy CentaurusCentaurus AA isis specialspecial ■ the first extragalactic radio source ■ the brightest source in the Southern Hemisphere ■ the second double lobed source discovered ± after Cygnus A ■ the closest Radio Galaxy ■ the closest AGN ■ the closest SMBH ± VLBI resolution 0.01pc, 100 Rs ■ A spectacular galaxy EvolutionEvolution ofof thethe ModelsModels ■ Radio sources ± Static magnetic field 1960 ± Evolutionary sequence 1970 ± Continuous injection ± Continuous reacceleration ■ Energy source ± Galaxy collisions 1950's ± Nuclear accretions 1960- ± Accretion triggered by collisions 1980- CentaurusCentaurus AA thethe closestclosest AGNAGN ■ Distance 3.4Mpc ■ Next closest comparable AGN M87 17Mpc ! ■ Average distance to a L=1024 W Hz-1 radio galaxies ± 10Mpc ± So we are lucky (or influenced!) ■ Much easier to study at all wavelengths ■ Subtends a large angular size ± Good linear resolution ± Background probes SomeSome RadioRadio GalaxiesGalaxies Name Size Log Log (kpc) Luminosity Energy (ergs sec-1) (ergs) Centaurus A 470 41.7 59.9 Cygnus A 200 45.2 60.6 M87 80 42.0 58.6 M82 1 39.5 55.2 PolarizationPolarization inin CentaurusCentaurus AA Bracewell 1962 ■ April 1962 ■ Parkes 64m just completed ■ Discovered by Bracewell ± Published Cooper and Price ± Visitors Log ± Not a National Facilities yet! ■ Connie
    [Show full text]
  • The Saga of M81: Global View of a Massive Stellar Halo in Formation
    Draft version October 27, 2020 Typeset using LATEX twocolumn style in AASTeX63 The Saga of M81: Global View of a Massive Stellar Halo in Formation Adam Smercina ,1, 2 Eric F. Bell ,1 Paul A. Price,3 Colin T. Slater ,2 Richard D'Souza,1, 4 Jeremy Bailin ,5 Roelof S. de Jong ,6 In Sung Jang ,6 Antonela Monachesi ,7, 8 and David Nidever 9, 10 1Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 2Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580, USA 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 4Vatican Observatory, Specola Vaticana, V-00120, Vatican City State 5Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324, USA 6Leibniz-Institut f¨urAstrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 7Instituto de Investigaci´onMultidisciplinar en Ciencia y Tecnolog´ıa,Universidad de La Serena, Ra´ulBitr´an1305, La Serena, Chile 8Departamento de F´ısica y Astronom´ıa,Universidad de La Serena, Av. Juan Cisternas 1200 N, La Serena, Chile 9Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 10National Optical Astronomy Observatory, 950 North Cherry Ave, Tucson, AZ 85719 (Received 31 October, 2019; Revised 31 August, 2020; Accepted 23 October, 2020) Submitted to The Astrophysical Journal ABSTRACT Recent work has shown that Milky Way-mass galaxies display an incredible range of stellar halo properties, yet the origin of this diversity is unclear. The nearby galaxy M81 | currently interacting with M82 and NGC 3077 | sheds unique light on this problem.
    [Show full text]
  • Arxiv:2007.04823V1 [Astro-Ph.HE] 9 Jul 2020 Inverse Compton-CMB Models , Although Other Evidence Seems to Be Compatible With
    Title: Resolving acceleration to very high energies along the Jet of Centaurus A Author: The H.E.S.S. Collaboration Correspondence to: [email protected] The full author list with affiliations can be found at the end of this paper Summary: The nearby radio galaxy Centaurus A belongs to a class of Active Galaxies that are very luminous at radio wavelengths. The majority of these galaxies show collimated relativistic outflows known as jets, that extend over hundreds of thousands of parsecs for the most powerful sources. Accretion of matter onto the central super-massive black hole is be- lieved to fuel these jets and power their emission 1, with the radio emission being related to the synchrotron radiation of relativistic electrons in magnetic fields. The origin of the extended X-ray emission seen in the kiloparsec-scale jets from these sources is still a mat- ter of debate, although Centaurus A’s X-ray emission has been suggested to originate in electron synchrotron processes 2–4. The other possible explanation is inverse Compton scat- tering with CMB soft photons 5–7. Synchrotron radiation needs ultra-relativistic electrons (∼ 50 TeV), and given their short cooling times, requires some continuous re-acceleration mechanism to be active 8. Inverse Compton scattering, on the other hand, does not require very energetic electrons, but requires jets that stay highly relativistic on large scales (≥1 Mpc) and that remain well-aligned with the line of sight. Some recent evidence disfavours 9–12 arXiv:2007.04823v1 [astro-ph.HE] 9 Jul 2020 inverse Compton-CMB models , although other evidence seems to be compatible with them 13, 14.
    [Show full text]
  • NEUTRAL HYDROGEN CLOUDS in the M81/M82 GROUP KM Chynoweth
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 2008 NEUTRAL HYDROGEN CLOUDS IN THE M81/M82 GROUP KM Chynoweth GI Langston Min Yun University of Massachusetts - Amherst FJ Lockman KHR Rubin See next page for additional authors Follow this and additional works at: https://scholarworks.umass.edu/astro_faculty_pubs Part of the Astrophysics and Astronomy Commons Recommended Citation Chynoweth, KM; Langston, GI; Yun, Min; Lockman, FJ; Rubin, KHR; and Scoles, SA, "NEUTRAL HYDROGEN CLOUDS IN THE M81/M82 GROUP" (2008). The Astrophysical Journal. 1129. 10.1088/0004-6256/135/6/1983 This Article is brought to you for free and open access by the Astronomy at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Astronomy Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Authors KM Chynoweth, GI Langston, Min Yun, FJ Lockman, KHR Rubin, and SA Scoles This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/astro_faculty_pubs/1129 Neutral Hydrogen Clouds in the M81/M82 Group Katie M. Chynoweth1 Vanderbilt University, Physics and Astronomy Department, 1807 Station B, Nashville, TN 37235 Glen I. Langston National Radio Astronomy Observatory, Green Bank, WV 24944 Min S. Yun University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002 Felix J. Lockman, K.H.R. Rubin2 and Sarah A. Scoles3 National Radio Astronomy Observatory, Green Bank, WV 24944 ABSTRACT We have observed a 3◦ ×3◦ area centered on the M81/M82 group of galaxies using the Robert C. Byrd Green Bank Telescope (GBT) in a search for analogs to the High Velocity Clouds (HVCs) of neutral hydrogen found around our galaxy.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]