Research Collection
Total Page:16
File Type:pdf, Size:1020Kb
Research Collection Doctoral Thesis The varying activity of supermassive black holes on multiple timescales Author(s): Sartori, Lia Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000382815 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 26133 The varying activity of supermassive black holes on multiple timescales A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Lia Federica Sartori Master of Science ETH in Physics ETH Zurich born on October 26, 1990 citizen of Bosco/Gurin (TI), Switzerland accepted on the recommendation of Prof. Dr. Alexandre Refregier Dr. Kevin Schawinski Prof. Dr. Ezequiel Treister 2019 Per la mia famiglia Vargaltsgott Abstract Variable emission is a ubiquitous property of active galactic nuclei (AGN). It can be observed or inferred at essentially all timescales, from hours to billions of years, and across the entire electromagnetic spectrum. Since most of the AGN luminosity originates from the accretion of matter into the central supermassive black hole (SMBH), the study of AGN variability can provide crucial information about the physics and structure of the central engine, including at spatial scales that are beyond the resolving power of most of the observing facilities for the majority of the AGN. In addition, the study of AGN variability allows us to probe the close link between SMBHs and their host galaxies by taking into account the fact that the energy injection from the AGN varies with time. In this thesis, I investigate AGN variability on multiple timescales and its effect on the host galaxy by combining multiwavelength observations, phenomenological models, and simulations. With multiwavelength observations, we can investigate AGN variability on an object-by-object basis, phenomenological models describe the general behaviour of the AGN population, while simulations of the AGN luminosity evolution with time (AGN light curves) are very valuable both for the planning of future time-domain surveys and for the interpretation of the observations. In the first part of the thesis, I show how galaxies with extended AGN photoionised gas on the scale of the galaxy or larger (& 10 kpc) can be used to constrain AGN variabiliy 4 and the AGN-host galaxy interaction on super-human, & 10 yr timescales. Using new dedicated X-ray data combined with archival observations, I confirm that the AGN in IC 2497 – the prototypical system of this class of extended AGN photoionised systems – significantly dropped in luminosity and, most likely, in accretion rate in the last ∼ 105yr, although the magnitude of the drop is lower than previously thought. The analysis also hints that the fading AGN is (or was) affecting its surroundings by injecting mechanical energy into the hot gas around it, in a similar way as observed in X-ray binaries, the stellar-mass analogs of AGN. These findings highlight that even when the activity of the AGN is decreasing, the SMBH can still affect its host galaxy. Due to the spatial extent of the photoionised gas, which allows us to trace the past luminosity, such galaxies are unique systems to search for fading AGN and investigate them in detail. I present a photoionisation analysis method aimed at reconstructing historical AGN light curves using spatially resolved spectroscopy and publicly available photoionisation codes, and i apply it to the merging galaxy Mkn 463. The results of these pilot studies are the motivation for three new large observational campaigns I am leading, aimed at obtaining a multiwavelength view of additional galaxies of this unique class. Specifically, hard X-ray observations from NuSTAR are needed to probe the current intrinsic AGN luminosity, spatially resolved spectroscopy from MUSE allows us to reconstruct historical AGN light curves, and radio imaging from the VLA is valuable for the investigation of the galaxies environment and the sample selection. I provide an overview of the obtained database and possible future uses. In the second part of the thesis, I present a simple yet powerful framework to simulate AGN light curves based on the distribution of Eddington ratios among the galaxy pop- ulation, therefore linking the behaviour of single AGN to the AGN population. This framework represents a novel unifying approach to AGN variability which allows us to simultaneously investigate the different variability features observed in specific objects, the general behaviour of the AGN population, as well as variability at very different timescales. The basic premise I put forward is that the variety of AGN variability features observed in different AGN arises from the fact that every AGN is a different (unique) realisation of the same underlying process, and that the observed periods (i.e. the observed light curves) are much shorter than the total AGN lifetime. Thanks to the efficient graphics processing units (GPU) implementation, our simulation tool enables the fast production of AGN light curves reaching up to ∼ 108 points. This allows us for example to cover over 1 Myr with a roughly weekly cadence, which is similar to the cadence of the upcoming time-domain surveys. The presented framework is there- fore highly valuable to prepare for, and best exploit, new observational time-domain data. As I demonstrate with some early applications, it can for example be used to investigate whether any observed variability feature is consistent with the general behaviour of the AGN population (i.e. if it can be reproduced with our simple general model) and to constrain the intrinsic AGN variability from external processes and from artefacts due, for example, to sample selection and observational cadence. The methods and results presented in this thesis provide a first important step towards a novel unified approach to AGN variability. This approach will be extremely valuable in the upcoming era of time-domain astronomy, in particular by linking phenomena observed in different galaxies and at very different timescales, that may appear unrelated. ii Riassunto La variabilità dell’emissione è una proprietà onnipresente nei nuclei galattici attivi (AGN, dall’inglese “active galactic nuclei”) che può essere osservata o dedotta a tutte le scale temporali, da ore a miliardi di anni, e a tutte le lunghezze d’onda. Poiché la frazione principale della luminosità degli AGN è prodotta dall’accrescimento di materia da parte del buco nero supermassiccio al loro centro, lo studio della variabilità degli AGN può fornire informazioni cruciali riguardo alla fisica e alla struttura del motore centrale, anche su scale spaziali inferiori al potere risolutivo della maggioranza dei telescopi per la maggior parte degli AGN. Inoltre, permette di investigare lo stretto legame tra i buchi neri supermassicci e le galassie che li ospitano, tenendo conto del fatto che l’iniezione di energia da parte dell’AGN varia nel tempo. Lo scopo di questa tesi è lo studio della variabilità degli AGN a diverse scale temporali e il suo effetto sulle galassie che li ospitano combinando osservazioni a diverse lunghezze d’onda, modelli fenomenologici e simulazioni. Le osservazioni a diverse lunghezze d’onda permet- tono di indagare la variabilità degli AGN oggetto per oggetto, i modelli fenomenologici descrivono il comportamento generale della popolazione di AGN, mentre le simulazioni dell’evoluzione temporale della loro luminosità (curve di luce) sono utili per pianificare ed interpretare osservazioni di variabilità degli AGN. Nella prima parte della tesi discuto come galassie associate a nubi estese di gas fo- toionizzato da AGN, di dimensioni pari a o maggiori della galassia stessa (& 10 kpc), possono essere utilizzate per caratterizzare la variabilità degli AGN e la loro interazione con le galassie ospitanti su archi di tempo molto maggiori delle scale temporali umane 4 (& 10 anni). Combinando nuove osservazioni nei raggi X appositamente proposte per la galassia IC 2497 – il prototipo di questa classe di galassie – con dati d’archivio con- fermo che la luminosità, e molto probabilmente il tasso d’accrescimento, dell’AGN al suo centro, sono diminuiti significativamente negli ultimi ∼ 105 anni, seppur meno rispetto a quanto precedentemente ipotizzato. Inoltre, l’analisi suggerisce che questo AGN, in fase di riduzione d’attività, stia influenzando (o abbia influenzato) l’ambiente circostante iniettando energia meccanica nel gas caldo che lo circonda, in maniera simile a quanto os- servato per le binarie X, oggetti analoghi agli AGN ma con masse stellari. Questi risultati evidenziano il fatto che un buoco nero supermassiccio può influenzare la galassia ospitante anche quando l’attività dell’AGN è in diminuzione. Grazie all’estensione spaziale del gas iii fotoionizzato, che permette di tracciare la luminosità passata, queste galassie sono sistemi unici per individuare e studiare AGN in fase di riduzione d’attività. Come parte di questa tesi presento un metodo per ricostuire curve di luce storiche utilizzando dati spettroscopici spazialmente risolti e codici pubblici per l’analisi dei processi di fotionizzazione, e lo applico alla galassia in interazione Mkn 463. I risultati di questi studi pilota sono la motivazione per tre nuove grandi campagne di osservazione che sto conducendo, volte ad ottenere una conoscenza a più lunghezze d’onda di altre galassie appartenenti a questa classe.