Thermal Energy

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Energy Thermal Energy By the Law of Conservation of Mechanical Energy, the work we put into a system is equal to the work we get out.If a ball is dropped from a height of 2 m, does it bounce back to its original height? No! The difference between the height dropped and the height of the bounce is the energy lost. Where did the energy go? Energy to compress the ball. Energy to overcome air resistance. And, the temperature of the ball increased (energy lost as heat) because of friction of the ball coming into contact with the floor.. Thermodynamics - The Study of Heat Heat is energy. More specific, heat is the flow of thermal energy between two objects. The unit of heat flow is the joule. If 1 g of water is raised 1 oC, 4.18 joules of heat is used. Or, if 1 kg (1 liter) of water is raised 1 oC, 4180 joules of heat energy is used. Another, more familiar unit for energy is the calorie. 4.18 joules = 1 calorie. For this course we will use 4180 j/kg oC for the specific heat capacity of water. Problem: How much heat energy (in joules) is used to raise the temperature of 25.0 g of water 10.0 oC? o Heat used (joules) = (mass H2O) x (specific heat of water) x (change in temp. C) # joules = (0.0250 kg) x (4180 j/kg oC) x (10.0 oC) = 1050 joules The English system uses British Thermal Units (BTU). The amount of energy needed to change the temperature of 1 pound of water by 1oF. 1 BTU = 252 calories. Air conditioners and furnaces are rated in the number of BTU's. Larger air conditioners can remove larger amounts of heat, thus it has a larger BTU rating. Thermal Equilibrium Heat is the flow of thermal energy. If two objects of different temperatures are placed in contact with each other, energy ALWAYS flows from the hotter to the colder object. A cup of hot coffee becomes cool because the heat from the coffee flows out into the surrounding cooler air. A glass of cold water becomes hot because the heat from the surrounding air flows into the cold water. Heat will not flow if the temperatures of the two are equal. This is thermal equilibrium. Lets put on our molecular goggles and look at the particles of two substances at different temperatures. The hotter substance has a greater thermal energy because its particles are moving at higher velocities. When fast moving particles collide with slow moving particles, the fast ones slow down while the slow ones speed up. This exchange of velocities continues until all of the particles have the same velocities (on average). Thus they have equal kinetic energies (on average). This is thermal equilibrium. Heat flow continues until the temperatures of the two substances are equal. Temperature Take a gallon of boiling water and a cup of boiling water. Which is at a higher temperature? They are equal (100oC)! Which has a greater amount of heat? The gallon of boiling water! Heat is the AMOUNT of heat flow. The gallon of boiling water can transfer MORE heat because it has MORE mass. Temperature is related to the kinetic energies of the particles of the substances. At the boiling point, the energies of the particles are equal. They have the same velocities. However, there are more particles in the gallon of water. There are more particles able to transfer energy to another object. There is greater energy flow or heat flow. There are three temperature scales currently being used. Fahrenheit Scale, where the freezing point of water is 32o and boiling point is 212o. Celsius Scale, where freezing point of water is 0o and boiling is 100o . Kelvin Scale, where the freezing point of water is 273 K and boiling point of water is 373 K. The Kelvin scale is also called the absolute scale because 0 K is defined as having NO HEAT ENERGY. This is the coldest possible temperature. Notice, that the Kelvin scale is obtained by adding 273 to any temperature in the Celsius scale. Example: We have 2 containers, one with twice as much water as the other. We add 200 joules of heat to the smaller container and the temperature rises 2 oC. If we add the same amount of heat to the larger container, what is the temperature rise? Since we have twice as much water, then it takes twice as much energy to increase its temperature the same amount. Therefore, since we have double the water, we get half the change in temperature. We have twice as many particles, thus they get half the energy of the smaller container. Conduction, Convection, and Radiation Hold a metal object over a flame. The end in the flame becomes hot, while the part you hold is still cool. Eventually the part you are holding becomes hotter. Heat is transferred through the object by conduction. Heat is transferred by the atoms of the metal colliding with each other. This is a transfer of kinetic energy from one particle to another. There is no movement of particles from one spot to another. The rate at which objects conduct heat is dependent upon the substance. Particles in a solid are closer together. They collide more often thus they can transfer kinetic energy faster. Particles in a liquid are further apart. They collide less often than solids, thus they conduct heat slower than solids. Particles in a gas are further apart than solids or liquids. They collide less often than solids and liquids, thus they conduct heat slower than solids or liquids. Objects that transfer heat readily are thermal conductors. Objects that transfer heat poorly are thermal insulators. In liquids and gases, heat can be transferred by a movement of the substance from a hotter region to cooler regions. This is convection. Convection of heat is dependent on the change in density of the substance when it becomes hotter. We have seen that hot air rises. It rises because it is less dense. Density = Mass / Volume, or D = M/V As we heat a substance the particles increase their velocities and the spaces between particles increases. Therefore it occupies a greater space. In other words, its volume increases. Notice, that as the volume of the substance increases while its mass remains constant, the density decreases. Example: 1 g of a gas occupies 1 liter = 1000 cm3 (10 cm x 10 cm x 10 cm) Its density = 1 g / l. If we heat it and it expands to 2 liters, its new density is now 0.5 g/l. Because it has a lower density it will float (rise) in the surrounding cooler air. Less dense objects float on top of more dense objects. Thermal energy can also be transferred via electromagnetic waves. These can travel through a vacuum such as outer space. This is radiation. The sun's thermal energy is converted to electromagnetic radiation. This radiation travels through space and is converted back into thermal radiation when it reaches the earth. Radiation of energy requires heat to flow through another substance without it affecting its temperature. The Greenhouse Effect The earth and atmosphere are warmed by radiant energy from the sun. The earth in turn emits terrestrial radiation lost to outer space. Changes in average temperature of the earth is dependent on how much radiant energy enters and leaves the earth. During the last 50,000 years the average temperature has fluctuated between 19oC and 27oC. The earth's temperature is currently around 27oC. Light of short wavelengths from the sun enter and pass through the atmosphere rather easily. Light of long wavelengths leave the earth as terrestrial radiation. However, much of the radiation is reradiated back to earth by the atmosphere as heat. This keeps the earth warm. Molecules such as carbon dioxide in the atmosphere are responsible for the reradiation process. The more CO2, the more energy radiated back to earth. The more energy reradiated, the warmer the earth. This is a problem. .
Recommended publications
  • A Novel and Cost Effective Radiant Heat Flux Gauge This Paper Presents a Patent-Pending Methodology of Measuring Radiation Emiss
    A Novel and Cost Effective Radiant Heat Flux Gauge S. Safaei and A. S. Rangwala Department of Fire Protection Engineering, Worcester Polytechnic Institution, Worcester, MA, 01609, USA V. Raghavan Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, India T.M. Muruganandam, Department of Aerospace Engineering, National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, India This paper presents a patent-pending methodology of measuring radiation emissions from fires, for the purposes of more practical optical flame detection and analysis. Flame radiation comprises of three phenomena: chemiluminescence, photoluminescence, and thermal radiation. The first two types are caused by elementary breakdown reactions of the reactants and the molecular excitations of products such as H2O and CO2, respectively. These emissions are within narrow bands of electromagnetic radiation wavelengths, and due to their specific molecular physics, are largely fuel dependant. The third type, thermal radiation emissions come from high temperature soot, which is a blanket term for any carbonaceous intermittent species of the combustion reaction. The amount and temperature of soot is case-specific, as it is influenced by fuel type, geometries, fuel-oxidizer premixing and the resulting level of combustion efficiency. However since naturally occurring fire hazards are diffusion flames, soot is present in high quantities and the majority of the radiation can be attributed to soot alone [1 – 2]. These soot emissions are over large ranges of the electromagnetic spectrum, from ultraviolet all the way to Long wave Infrared (LWIR), following the classic Planck Law for Blackbody emitters. This distribution of radiant energy, E, is highly dependent on the temperature of the emitter, T, due to its exponential relation E=T4.
    [Show full text]
  • Low Cost Solar Thermoelectric Water Floating Device to Supply Measurement Platform
    78 IAPGOŚ 4/2019 p-ISSN 2083-0157, e-ISSN 2391-6761 DOI: 10.35784/IAPGOS.734 LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM Andrzej Nowrot1, Monika Mikołajczyk2, Anna Manowska1, Joachim Pielot1, Antoni Wojaczek1 1Silesian University of Technology, Department of Electrical Engineering and Automation in Industry, Gliwice, Poland, 2Famur Institute Ltd, Katowice, Poland Abstract. This work presents the prototype of the solar – thermoelectric device, which can float on water surface. It produces electrical energy as a result of the Seebeck effect in a commercial, low-cost Peltier module. The main application of the device will be an autonomous and a floating measurement platform. An important advantage of the presented solution is the possibility to work alike at day, when a solar light heats the surface of the absorber, and at night, when the different of temperatures between air and water causes the heat flux and in an effect the electricity. The device is capable of working for many cloudy days and also in winter on very short days. The presented device is based on low-cost and widely available components. Keywords: thermoelectric devices, solar power generation, energy conversion TERMOELEKTRYCZNE URZĄDZENIE SOLARNE DO ZASILANIA PLATFORMY POMIAROWEJ Streszczenie. W pracy zaprezentowano prototypowe solarne urządzenie termoelektryczne pływające po powierzchni wody. Wytwarza ono w niedrogim, komercyjnym module Peltiera energię elektryczną w wyniku zachodzącego w nim zjawiska Seebecka. Docelowo głównym obszarem aplikacyjnym urządzenia będzie zasilanie autonomicznej, pływającej platformy pomiarowa do monitorowania parametrów środowiskowych. Istotną zaletą przedstawionego rozwiązania jest możliwość pracy zarówno w dzień, gdy światło słoneczne ogrzewa powierzchnię absorbera, jak również w nocy, gdy różnica temperatur między powietrzem a wodą powoduje powstawanie strumienia ciepła w module Peltiera.
    [Show full text]
  • United States Patent [191 4,2313J97 Sher
    United States Patent [191 4,2313J97 Sher [54] RADIANT ENERGY TO ELECTRIC ENERGY 4,084,101 4/1978 Sher ..................................... 290/1 R CONVERTER 4,096,393 6/1978 Sher ..................................... 290A R [76] Inventor: Arden Sher, 108 Charles River OTHER PUBLICATIONS Landing Rd., Williamsburg, Va. R. Solomon et al., “Polarization in LaF,”, J. Appl. Phys., 23185 VO~.37, pp. 3427-3432, (1966). [ * 3 Notice: The portion of the term of this patent A. Sher et al., “Transport Properties of LaF3”, Phys. subsequent to Apr. 11,1995, has been Rev., vol. 144, pp. 593-604, (1966). disclaimed. J. E. Drummond, “Electrical Power Conversion”, IECEC Record ’75, pp. 569-575. [21] Appl. No.: 889,514 S. B. Skinner, “Thermodielectric Energy Conversion [22] Filed: Mar. 23,1978 by Thin Films: Experiment & Theory”, Intersociety Energy Conv. Eng. Con$, (1967), pp. 865-873. Related U.S. Application Data A. Sher et al., “LaF3 Infrared Detector”, Appl. Phys. Lett., vol. 28, pp. 676-678, (1976). [63] Continuation-in-part of Ser. No. 631,689, Nov. 13, 1975, Pat. No. 4,084,101. Primary Examiner-Aaron Weisstuch Attorney, Agent, or Firm-Lowe, King, Price and [51] Int. Cl.2 ............................................. HQlL31/Q4 Becker [52] U.S. Cl. ............................... 136/89 SP; 290/1 R 361/280; 361/282; 310/308; 310/309; 250/211 1571 ABSTRACT 250/212; 250/336 R; Radiant energy is converted into electric energy by [58] Field of Search ............ 136/89 R, 89 NB, 89 SP; irradiating a capacitor including an ionic dielectric. The 250/211 R, 212, 336; 290/1 R 361/280,282; 310/308, 309 dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or [561 References Cited silver bromide, so that a multiplicity of crystallites exist U.S.
    [Show full text]
  • HEAT and TEMPERATURE Heat Is a Type of ENERGY. When Absorbed
    HEAT AND TEMPERATURE Heat is a type of ENERGY. When absorbed by a substance, heat causes inter-particle bonds to weaken and break which leads to a change of state (solid to liquid for example). Heat causing a phase change is NOT sufficient to cause an increase in temperature. Heat also causes an increase of kinetic energy (motion, friction) of the particles in a substance. This WILL cause an increase in TEMPERATURE. Temperature is NOT energy, only a measure of KINETIC ENERGY The reason why there is no change in temperature at a phase change is because the substance is using the heat only to change the way the particles interact (“stick together”). There is no increase in the particle motion and hence no rise in temperature. THERMAL ENERGY is one type of INTERNAL ENERGY possessed by an object. It is the KINETIC ENERGY component of the object’s internal energy. When thermal energy is transferred from a hot to a cold body, the term HEAT is used to describe the transferred energy. The hot body will decrease in temperature and hence in thermal energy. The cold body will increase in temperature and hence in thermal energy. Temperature Scales: The K scale is the absolute temperature scale. The lowest K temperature, 0 K, is absolute zero, the temperature at which an object possesses no thermal energy. The Celsius scale is based upon the melting point and boiling point of water at 1 atm pressure (0, 100o C) K = oC + 273.13 UNITS OF HEAT ENERGY The unit of heat energy we will use in this lesson is called the JOULE (J).
    [Show full text]
  • LESSON 1 What Is Energy?
    LESSON 1 What is Energy? Overview In this lesson students review what they know about energy in everyday life, define it, learn the different energy forms through play, and differentiate between potential and kinetic energy. Student • I can use my own words to show I understand “energy.” Learning • I can describe the main forms of energy and give examples. Targets • I can show potential and kinetic energy with my body and I can give examples of each. • I can give examples of how I use energy every day. NGSS MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.] Background Energy is part of everything that happens in the world and everything we do. Energy can be in the form of heat, light, gravity, sound, motion, chemical reactions, or electricity. Energy is the ability to do work or make a change. Nine forms of energy: (see Overhead 1 “Forms of Energy”) • Chemical: Chemical energy is the energy stored in the bonds of atoms and molecules. Biomass, petroleum, natural gas, propane and coal are examples of stored chemical energy. • Nuclear: Nuclear energy is the energy stored in the nucleus of an atom. It is the energy that holds the nucleus together.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • IB Questionbank
    Topic 3 Past Paper [94 marks] This question is about thermal energy transfer. A hot piece of iron is placed into a container of cold water. After a time the iron and water reach thermal equilibrium. The heat capacity of the container is negligible. specific heat capacity. [2 marks] 1a. Define Markscheme the energy required to change the temperature (of a substance) by 1K/°C/unit degree; of mass 1 kg / per unit mass; [5 marks] 1b. The following data are available. Mass of water = 0.35 kg Mass of iron = 0.58 kg Specific heat capacity of water = 4200 J kg–1K–1 Initial temperature of water = 20°C Final temperature of water = 44°C Initial temperature of iron = 180°C (i) Determine the specific heat capacity of iron. (ii) Explain why the value calculated in (b)(i) is likely to be different from the accepted value. Markscheme (i) use of mcΔT; 0.58×c×[180-44]=0.35×4200×[44-20]; c=447Jkg-1K-1≈450Jkg-1K-1; (ii) energy would be given off to surroundings/environment / energy would be absorbed by container / energy would be given off through vaporization of water; hence final temperature would be less; hence measured value of (specific) heat capacity (of iron) would be higher; This question is in two parts. Part 1 is about ideal gases and specific heat capacity. Part 2 is about simple harmonic motion and waves. Part 1 Ideal gases and specific heat capacity State assumptions of the kinetic model of an ideal gas. [2 marks] 2a. two Markscheme point molecules / negligible volume; no forces between molecules except during contact; motion/distribution is random; elastic collisions / no energy lost; obey Newton’s laws of motion; collision in zero time; gravity is ignored; [4 marks] 2b.
    [Show full text]
  • Thermal Energy: Using Water to Heat a School
    Thermal Energy: Using Water to Heat a School Investigation Notebook NYC Edition © 2018 by The Regents of the University of California. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. Teachers purchasing this Investigation Notebook as part of a kit may reproduce the book herein in sufficient quantities for classroom use only and not for resale. These materials are based upon work partially supported by the National Science Foundation under grant numbers DRL-1119584, DRL-1417939, ESI-0242733, ESI-0628272, ESI-0822119. The Federal Government has certain rights in this material. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. These materials are based upon work partially supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A130610 to The Regents of the University of California. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education. Developed by the Learning Design Group at the University of California, Berkeley’s Lawrence Hall of Science. Amplify. 55 Washington Street, Suite 800 Brooklyn, NY 11201 1-800-823-1969 www.amplify.com Thermal Energy: Using Water to Heat a School
    [Show full text]
  • Thermal Profiling of Residential Energy Consumption
    1 Thermal profiling of residential energy consumption Adrian Albert and Ram Rajagopal Abstract—Demand Response (DR) programs aim to dynami- the thermal mass of the premise may act as “thermal bat- cally match consumption on the grid with available supply in tery”. Affecting the thermally-sensitive load may be typically real-time. Understanding the patterns in demand of individuals achieved through direct load control of the HVAC system (e.g., is now being facilitated by granular consumption data collected load curtailment or automatic adjustment of the thermostat via smart meter sensors that power utility companies have rolled setpoint), through adjustable rates (e.g., critical peak pricing), out at scale. In this paper we propose a dynamic model that uses or through incentive schemes [4], [5]. hourly electricity and weather readings to characterize residential users’ thermally-sensitive consumption. From this model we Here we propose a simple model of consumption for a extract useful benchmarks to build profiles of individual users residential premise that is driven by unobserved “occupancy for use with DR programs that focus on temperature-dependent states” that have different responses to ambient weather. These consumption such as air conditioning or heating. We present are consumption regimes of a given household that depend on example profiles generated using our model on real consumers, lifestyle (work schedule, familial composition etc.), premise and show its performance on a large sample of residential characteristics (heating/cooling mass, square footage etc.), users. We then compute metrics that allow us to segment the appliance stock, and weather patterns. It is a daunting task population dynamically for the purpose of a thermally-motivated to disentangle how much energy each of these components DR program.
    [Show full text]
  • Introducing Electric Thermal Energy Storage (ETES) – Putting Gigawatt Hours of Energy at Your Command
    Same forces. New rules. Introducing Electric Thermal Energy Storage (ETES) – putting gigawatt hours of energy at your command. Impossible is just another word for never done before. 100% renewables is said to be impossible. As were the first flight, space travel, the internet … Now here is something that makes a complete energy transition possible: Electric Thermal Energy Storage (ETES). A proven energy storage solution that is inexpensive, built with 80% off-the-shelf components, and scalable to several GWh. No need to explain that ETES is a giant step – for SGRE and for the energy industry. While the forces of nature remain the same, Electric Thermal Energy Storage has launched a new era. Find out how it will boost the energy transition and how new players, energy-intensive companies and even conventional power plants will profit from it. Or, in short: time for new rules. Welcome TiteltextRule #1: Power in. Power out. ETES is technology that can be charged with electricity or directly with heat and which then releases heat that, in return, can generate electricity. Unlike other storage technologies, it is made of rocks absorbing heat. This makes ETES very sustainable in design and the first gigawatt-hour scale energy storage that can be built almost anywhere – limiting its size and use only to your imagination. Flexible scalability of charging power, discharging power and storage capacity. Proven, reliable technology – discharging technology used for more than a 100 years. Cost-competitive, GWh scale, multiple revenue streams. ETES technology TiteltextRule #2: If it works for you, it works for all. ETES solutions basically prolong the availability of ETES and all of its components are fully scalable energy that otherwise would be “wasted“.
    [Show full text]
  • Lesson 8 Energy in Chemical Reactions Review
    Name __________________________________________________ Date ______________________________ Lesson 8 Energy in Chemical Reactions Review Main Ideas Read each item. Then select the letter next to the best answer. 1. An ice pack is activated and placed on a person’s wrist. After the resulting chemical reaction, the average temperature of the hands-icepack system is lower. Which of the following statements best completes a statement about the transfer of energy in this chemical reaction. This reaction is: A. endothermic, because more thermal energy is absorbed than released. B. endothermic, because more thermal energy is released than absorbed. C. exothermic, because more thermal energy is absorbed than released. D. exothermic, because more thermal energy is released than absorbed. 2. Calcium ammonium nitrate is a chemical used in fertilizers. It can also be used to make an instant ice-pack. When the calcium ammonium nitrate is allowed to mix with the water inside the ice pack, a chemical reaction takes place. This reaction cannot occur on its own because it needs a source of heat to continue until it is complete. Which statement best describes the type of chemical reaction and the source of heat? A. Endothermic reaction, and the heat comes out of the water. B. Exothermic reaction, and the heat comes out of the water. C. Exothermic reaction, and the heat comes out of the reaction. D. Endothermic reaction, and the heat comes out of the reaction. 3. When a candle burns, a chemical reaction occurs changing wax and oxygen into carbon dioxide and water vapor. The average temperature of the candle-room system increases.
    [Show full text]
  • Fine Fuel Heating by Radiant Flux
    Combust. Sci. and Tech., 182: 215–230, 2010 Copyright # Taylor & Francis Group, LLC ISSN: 0010-2202 print=1563-521X online DOI: 10.1080/00102200903341538 FINE FUEL HEATING BY RADIANT FLUX David Frankman,1 Brent W. Webb,1 Bret W. Butler,2 and Don J. Latham2 1Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA 2Rocky Mountain Research Station, U.S. Forest Service Fire Sciences Laboratory, Missoula, Montana, USA Experiments were conducted wherein wood shavings and Ponderosa pine needles in quiescent air were subjected to a steady radiation heat flux from a planar ceramic burner. The internal temperature of these particles was measured using fine diameter (0.076 mm diameter) type K thermocouples. A narrow angle radiometer was used to determine the emissive power generated by the burner. A model was developed to predict the steady-state temperature of a cylindrical particle with an imposed radiation heat flux under both quiesc- ent air (buoyancy-induced cooling) and windy (forced convection cooling) conditions. Excellent agreement was observed between the model predictions and the experimental data. Parametric studies using the validated model explore the effect of burner (flame) tem- perature and distance, fuel size, and wind speed. The data suggest that ignition of the fuel element by radiation heating alone is likely only under circumstances where the fire is very intense (such as crown fires), and even then may still be dependent on pilot ignition sources. Keywords: Fine fuel; Heating; Radiation INTRODUCTION Radiation and convection heat transfer have complimentary roles in wildland fire spread (Anderson, 1969), but due to the complexity of the wildland fire environ- ment, they remain largely undetermined.
    [Show full text]