Interaction and Associated Conformational Changes in the Modulation of the Redox Properties in Flavoproteins

Total Page:16

File Type:pdf, Size:1020Kb

Interaction and Associated Conformational Changes in the Modulation of the Redox Properties in Flavoproteins THE ROLE OF THE N(5) INTERACTION AND ASSOCIATED CONFORMATIONAL CHANGES IN THE MODULATION OF THE REDOX PROPERTIES IN FLAVOPROTEINS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mumtaz Kasim, M.Sc. * * * * * The Ohio State University 2002 Dissertation Committee: Dr. Richard P. Swenson, Advisor Approved by Dr. Gary Means ________________________ Dr. Caroline Breitenberger Advisor Dr. Mark Foster Department of Biochemistry ABSTRACT Many biochemical processes exploit the remarkable versatility of flavoenzymes and their flavin cofactors by modulating the numerous interactions of the cofactor with the apoflavoprotein. The interaction between the protein and N(5) of the flavin cofactor has been of particular interest for this very reason. In the Clostridium beijerinckii flavodoxin, the four residue reverse turn –Met56-Gly-Asp-Glu59- provides the majority of the critical interactions with the flavin mononucleotide cofactor (FMN) that contribute to the binding and differential stabilization of its three redox states. This turn undergoes a conversion from a mix of cis/trans peptide configurations that approximates a type II turn in the oxidized state to a type II′ turn upon reduction. This change results in the formation of a new hydrogen bond between the N(5)H of the reduced flavin and the carbonyl group of Gly57 of the central peptide bond of the turn, an interaction that contributes to the modulation of the oxidation-reduction potentials of the cofactor. Systematic replacement of the second and third residues of the turn (Gly57 and Asp58) with –Gly-Gly-, -Gly- Ala-, -Ala-Gly- and –Ala-Ala- dipeptidyl sequences resulted in an altered stability of the FMN semiquinone that was directly correlated to the conformational energetics of the turn. In addition, sequential elimination of all side chain interactions in various combinations through an alanine-scanning mutagenesis approach proved the overriding ii importance of the main chain interactions with the N(5)H of the FMN and the associated conformational change in this loop to be the primary determinant of the thermodynamic stabilization of the FMN semiquinone. In contrast, in the structurally homologous FMN-binding domain of cytochrome P450 reductase from Bacillus megaterium, a main chain hydrogen bond to N(5) is present in the oxidized state. 15N-NMR studies indicate that in this case, a conformational change occurs in the flavin at the N(5) position. Sequence specificity of the type I′ turn adopted by the residues –Tyr536-Asn-Gly-His539- was tested by replacement of the central residues of the turn (Asn537 and Gly538) with –Gly-Gly-, -Gly-Ala-, -Ala-Gly- and –Ala-Ala- dipeptidyl sequences. These mutations established the critical role of the position of the glycine residue in maintaining turn stability. We conclude that the N(5) interaction and the associated conformational change, as well as sequence specificity of the turn involved in flavin binding, play a critical role in determining the redox properties of flavoproteins. iii To my dad, who always believed in me, and to my husband, who taught me to believe in myself. iv ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Richard P. Swenson, for his guidance, support and patience. I would like to also thank my family who always had faith in me and who continue to understand my long absence away from home. I would like to thank past and present members of the Swenson laboratory, especially, Dr Lawrence Druhan, Dr. Fu-Chung Chang, Dr. Yucheng Feng, Dr. Luke Bradley, James Wu, Kun-Yun Yang, Tracey Murray and Michelle Nauerth, for valuable help and insight. I would like to thank the people in Buckeye Tang Soo Do, whose support and friendship helped me through the years. I would like to thank my friends: Joe Davis, Paul Erwin and especially Shane Mellor, for being there when I needed them and for making these past few years more fun than I thought was possible. Finally, I would like to thank my many friends in Graduate School, in particular: Milan Jovanovic, Craig McElroy, Srisunder Subramanium, Ryan Pereira and Manoj Nair for providing a very interesting work environment. v VITA April 6, 1972……………………………… Born – Bombay, India 1993……………………………………….. B. Sc. Life Sciences/Biochemistry, St. Xavier's College, University of Bombay 1995………………………………….……. M. Sc. Biochemistry, University of Bombay 1996 – present…………………………….. Graduate Teaching and Research Associate, The Ohio State University PUBLICATIONS 1. Kasim, M. and Swenson, R. P. “Alanine-Scanning of the 50’s Loop in the Clostridium beijerinckii Flavodoxin: Evaluation of Additivity and the Importance of Interactions Provided by the Main Chain in the Modulation of the Oxidation- Reduction Potentials.” Biochemistry, 40, 13548–13555, (2001). 2. Kasim, M. and Swenson, R. P. “Conformational Energetics of a Reverse Turn in the Clostridium beijerinckii Flavodoxin is Directly Coupled to the Modulation of its Oxidation-Reduction Potentials.” Biochemistry, 39, 15322-15332, (2000). 3. Swenson, R. P., Kasim, M., Bradley, L. and Druhan, L. “Role of Conformational Dynamics and Associated Electrostatic and Hydrogen Bonding Interactions in the Regulation of Redox Potentials in the Clostridium beijerinckii Flavodoxin.” In Flavins and Flavoproteins 1999 (Ghisla, S., Kroneck, P., Macheroux, P., and Sund, H., Eds) Agency for Scientific Publishing, Berlin, 183-186, (2000). vi FIELDS OF STUDY Major Field: Biochemistry vii TABLE OF CONTENTS PAGE Abstract……………………………………………………………………….. ii Dedication…………………………………………………………………….. iv Acknowledgments…………………………………………………………….. v Vita……………………………………………………………………………. vi List of Tables…………………………………………………………………. x List of Figures………………………………………………………………… xii List of Abbreviations…………………………………………………………. xvi Chapters: 1. Introduction…………………………………………………………... 1 2. Materials and Methods………………………………………………. 34 3. Conformational Energetics of a Reverse Turn in the Clostridium beijerinckii Flavodoxin is Directly Coupled to the Modulation of its Oxidation- Reduction Potentials………………………..…………… 42 Introduction………………………………………………………….. 42 Materials and Methods………………………………………………. 49 Results……………………………………………………………….. 49 viii Discussion…………………………………………………………… 71 4. Alanine-Scanning of the 50’s Loop in the Clostridium beijerinckii Flavodoxin: Evaluation of Additivity and the Importance of Interactions Provided by the Main Chain in the Modulation of the Oxidation-Reduction Potentials……………………………………… 84 Introduction………………………………………………………….. 84 Materials and Methods………………………………………………. 91 Results……………………………………………………………….. 91 Discussion…………………………………………………………… 101 5. Cloning and Characterization of the FMN-Binding Domain of Cytochrome P450 Reductase From Bacillus Megaterium…………… 113 Introduction………………………………………………………….. 113 Materials and Methods………………………………………………. 123 Results……………………………………………………………….. 123 Discussion…………………………………………………………… 153 6. The FMN-Binding Domain of P450BM-3: Investigation into the Possible Mechanisms of Redox Tuning……………………………... 159 Introduction………………………………………………………….. 159 Materials and Methods………………………………………………. 163 Results……………………………………………………………….. 164 Discussion…………………………………………………………… 184 7. General Conclusions and Future Directions…………………………. 190 List of references……………………………………………………………… 196 ix LIST OF TABLES TABLE PAGE 1. Turns in the flavodoxin from Clostridium beijerinckii………………… 15 2. Idealized dihedral angles of hydrogen bonded β turns………………… 17 3. Sequence and midpoint potential comparisons of several flavodoxins... 18 4. Oxidation-reduction midpoint potentials for the Clostridium beijerinckii flavodoxin…………………………………………………. 20 5. Energies of β turn formation for the Type II and Type II′ turns……….. 23 6. Relative free-energy changes for refolding from the Type II to the Type II′ turn……………………………………………………………. 24 7. Energies of β turn formation for the Type I′ turn……….…………….. 31 8. Relative free-energy changes for refolding from the extended to the Type I′ turn conformation……...………………………………………. 32 9. Oxidation-reduction midpoint potentials, FMN dissociation constants and Gibbs free energy changes of wild-type and mutant C. beijerinckii flavodoxins…………………………………………………………….. 57 10. 15N Chemical shifts for free and bound FMN in the oxidized state, pH 7.0, 300°K for C. beijerinckii………………………………………... 67 11. 1H-15N HSQC temperature coefficients for the Clostridium beijerinckii wild-type and mutant flavodoxins in the oxidized state….. 70 x 12. Oxidation-reduction midpoint potentials, FMN dissociation constants and Gibbs free energy of FMN binding for wild-type and mutant C. beijerinckii flavodoxins……………………………….……………….. 97 13. 15N Chemical shifts for free and bound FMN in the oxidized state, pH 7.0, 300°K for BM-3…………………………………………………… 145 14. 15N Chemical shifts for free and bound FMN in the reduced state, pH 7.0, 300°K for BM-3…………………………………………………… 149 15. Coupling constants for N(3)H and N(5)H in the oxidized and fully reduced states of BM-3…………………………………………….…. 150 16. 15N Chemical shifts for free and bound FMN in the oxidized state, pH 7.0, 300°K for –537Ala-Ala-…………………………………………… 172 xi LIST OF FIGURES FIGURE PAGE 1. The structures of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD)……………………………………………. 2 2. The three oxidation states of the isoalloxazine ring…………………… 4 3. The UV-visible spectra of the flavin cofactor in different redox states... 5 4. Structure of the Clostridium beijerinckii flavodoxin…………………... 12 5. Comparison of the
Recommended publications
  • The Flavodoxin Flda Activates the Class Ia Ribonucleotide Reductase of Campylobacter Jejuni
    This is a repository copy of The flavodoxin FldA activates the class Ia ribonucleotide reductase of Campylobacter jejuni. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/173101/ Version: Published Version Article: Alqurashi, A., Alfs, L., Swann, J. et al. (2 more authors) (2021) The flavodoxin FldA activates the class Ia ribonucleotide reductase of Campylobacter jejuni. Molecular Microbiology. ISSN 0950-382X https://doi.org/10.1111/mmi.14715 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Received: 29 October 2020 | Revised: 11 March 2021 DOI: 10.1111/mmi.14715 RESEARCH ARTICLE The flavodoxin FldA activates the class Ia ribonucleotide reductase of Campylobacter jejuni Abdulmajeed Alqurashi1 | Laura Alfs2 | Jordan Swann2 | Julea N. Butt2 | David J. Kelly 1 1Department of Molecular Biology and Biotechnology, The University of Sheffield, Abstract Sheffield, UK Campylobacter jejuni is a microaerophilic zoonotic pathogen with an atypical res- 2 School of Chemistry, University of East piratory Complex I that oxidizes a flavodoxin (FldA) instead of NADH. FldA is es- Anglia, Norwich, UK sential for viability and is reduced via pyruvate and 2- oxoglutarate oxidoreductases Correspondence (POR/OOR).
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | watch?v=56vQ0S2eAjw SPEAKER 1: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. PROFESSOR: Today what I want to do within the lexicon is tell you about nature's most spectacularly beautiful cofactors. And these are formed from vitamin B-12, which you find in your vitamin bottle. OK. So what is the structure of vitamin B-12, and why do I say they are spectacularly beautiful? So it's very hard to see, but if you look at the structure of this, where have you seen a molecule this complicated with five membered rings, each of which has a nitrogen in this? You've seen this when you studied hemoglobin, and you think about heme and proto protoporphyrin IX. If you look at the biosynthetic pathway of heme, a branchpoint of that pathway is to make this ring, which is found in adenosylcobalamin and methylcobalamin, which is what we're going to be focusing on today. And this ring is called the corrin ring. So what I want to do is introduce you a little bit to this corrin ring and what's unusual about it compared to protoporphyrin IX that you've seen before. So the vitamin, as in the case of all vitamins that we've talked about over the course of the semester, is not the actual cofactor used in the enzymatic transformation.
    [Show full text]
  • Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
    cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Definition of the Catalytic Site of Cytochrome C Oxidase: Specific Ligands of Heme a and the Heme A3-CUB Center JAMES P
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 4786-4790, June 1992 Biochemistry Definition of the catalytic site of cytochrome c oxidase: Specific ligands of heme a and the heme a3-CUB center JAMES P. SHAPLEIGH*, JONATHAN P. HOSLERt, MARY M. J. TECKLENBURGO§, YOUNKYOO KIMt, GERALD T. BABCOCKt, ROBERT B. GENNIS*, AND SHELAGH FERGUSON-MILLERt *School of Chemical Sciences, University of Illinois, Urbana, IL 61801; and Departments of tBiochemistry and tChemistry, Michigan State University, East Lansing, MI 48824 Communicated by N. Edward Tolbert, February 6, 1992 (receivedfor review November 17, 1991) ABSTRACT The three-subunit aa3-type cytochrome c ox- and deduced amino acid sequences are very similar to those idase (EC 1.9.3.1) of Rhodobacter sphaeroides is structurally from the closely related bacterium Paracoccus denitrificans and functionally homologous to the more complex mitochon- (2, 10-12). In addition, subunit I shows 50% sequence drial oxidase. The largest subunit, subunit I, is highly con- identity to subunit I ofbovine heart cytochrome c oxidase (9). served and predicted to contain 12 transmembrane segments Hydropathy profile analysis of subunit I from Rb. sphae- that provide all the ligands for three of the four metal centers: roides is consistent with 12 transmembrane helical spans, as heme a, heme a3, and CUB. A variety of spectroscopic tech- previously proposed for bovine subunit I (11). The two- niques identify these ligands as histidines. We have used dimensional model that emerges from this analysis (Fig. 1) site-directed mutagenesis to change all the conserved histidines highlights seven histidine residues, six of which are found to within subunit I of cytochrome c oxidase from Rb.
    [Show full text]
  • Biological Chemistry I, Lexicon
    Chemistry 5.07, Fall 2013 Lexicon of biochemical reactions Topic Description Page # # 1 Review of electrophiles and nucleophiles found in Biochemistry 2 2 C-C bond formation via carbonyl chem (aldol and Claisen reactions): Aldehydes, ketones, and Coenzyme 3-5 A and thioesters 3 Prenyl transfer reactions (will not be covered in 5.07) 6 4 Redox cofactors – Flavins (FAD, FMN, riboflavin) and NAD+ (NADP+) 7-12 5 ATP and phosphoryl transfer reactions 13-15 6 Thiamine pyrophosphate 16-18 7 Lipoic acid 19 8 S-Adenosylmethionine (SAM, Adomet), methylations 20 9 Pyridoxal phosphate 21-24 10 Biotin 25 11 Hemes 26-27 12 Metal cofactors: FeS clusters, Cu clusters 28 13 Coenzyme Q 29 14 ET theory 30-32 15 Folates 33-34 16 Methylcobalamin and adenosylcobalamin 35-37 1. Review of electrophiles and nucleophiles in biology Electrophiles Nucleophiles Nucleophilic form H+ Protons + Hydroxyl group Mn+ Metal ions + Sulfhydryl group + Carbonyl carbon Amino group Imine (protonated imine) carbon + Imidazole group (Schiff base) 2 2. Carbonyl Chemistry: Mechanisms of C-C Bond Formation • There are three general ways to form C-C bonds: 1. Aldol reactions where an aldehyde is condensed in a reversible reaction with another aldehyde or a ketone; 2. Claisen reaction in which a Coenzyme A thioester is condensed with an aldehyde or a ketone; 3. Prenyl transfer reactions where two 5 carbon units are condensed to form isoprenoids. • The aldol and claisen reactions involve carbonyl chemistry. These reactions are prevalent in glycolysis, fatty acid biosynthesis and degradation and the pentose phosphate pathway. 1. Aldol reaction generalizations: a.
    [Show full text]
  • Heme Deficiency May Be a Factor in the Mitochondrial and Neuronal Decay of Aging
    Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging Hani Atamna*, David W. Killilea, Alison Nisbet Killilea, and Bruce N. Ames* Children’s Hospital Oakland Research Institute, Oakland, CA 94609 Contributed by Bruce N. Ames, September 26, 2002 Heme, a major functional form of iron in the cell, is synthesized in other environmental toxins (15, 16). Ferrochelatase is inacti- the mitochondria by ferrochelatase inserting ferrous iron into vated when its iron-sulfur cluster disassembles because intracel- protoporphyrin IX. Heme deficiency was induced with N-methyl- lular iron levels are low (17) or nitric oxide (NO) is present (18). protoporphyrin IX, a selective inhibitor of ferrochelatase, in two Iron deficiency is by far the most studied; it impairs cognitive human brain cell lines, SHSY5Y (neuroblastoma) and U373 (astro- function in children, impacts the morphology and the physiology cytoma), as well as in rat primary hippocampal neurons. Heme of brain even before changes in hemoglobin appear (19), dam- deficiency in brain cells decreases mitochondrial complex IV, acti- ages mitochondria (20), and causes oxidative stress (20). Iron vates nitric oxide synthase, alters amyloid precursor protein, and deficiency in children is associated with difficulties in performing corrupts iron and zinc homeostasis. The metabolic consequences cognitive tasks and retardation in the development of the CNS resulting from heme deficiency seem similar to dysfunctional (21, 22). Prenatal iron deficiency causes loss of cytochrome c neurons in patients with Alzheimer’s disease. Heme-deficient oxidase (complex IV) in selected regions in the brain of rats (23) SHSY5Y or U373 cells die when induced to differentiate or to and causes a decrease in ferrochelatase (17).
    [Show full text]
  • Structural Basis of Inter-Domain Electron Transfer in Ncb5or, a Redox Enzyme Implicated in Diabetes and Lipid Metabolism
    STRUCTURAL BASIS OF INTER-DOMAIN ELECTRON TRANSFER IN NCB5OR, A REDOX ENZYME IMPLICATED IN DIABETES AND LIPID METABOLISM By Bin Deng Submitted to the graduate degree program in Rehabilitation Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Hao Zhu, Ph.D. (co-chair, advisor) Irina Smirnova, Ph.D. (co-chair) David Benson, Ph.D. (co-advisor) WenFang Wang, Ph.D. Aron Fenton, Ph.D. Date defended: August 17, 2011 The Dissertation Committee for Bin Deng certifies that this is the approved version of the following dissertation STRUCTURAL BASIS OF INTER-DOMAIN ELECTRON TRANSFER IN NCB5OR, A REDOX ENZYME IMPLICATED IN DIABETES AND LIPID METABOLISM Hao Zhu, Ph.D. (co-chair, advisor) Irina Smirnova, Ph.D. (co-chair) Date approved: August 22, 2011 ii ABSTRACT NADH cytochrome b5 oxidoreductase (Ncb5or) is a multi-domain redox enzyme found in all animal tissues and associated with the endoplasmic reticulum (ER). Ncb5or contains (from N-terminus to C terminus) a novel N-terminal region, the b5 domain (Ncb5or-b5), the CS domain, and the b5R domain (Ncb5or-b5R). Ncb5or-b5, the heme binding domain, is homologous to microsomal cytochrome b5 (Cyb5A) and belongs to cytochrome b5 superfamily. Ncb5or-b5R, the FAD (flavin adenine dinucleotide) binding domain, is homologous to cytochrome b5 reductase (Cyb5R3) and belongs to ferredoxin NADP+ reductase superfamily. Both superfamilies are of great biological significance whose members have important functions. The CS domain can be assigned into the heat shock protein 20 (HSP20, or p23) family, whose members are known to mediate protein-protein interactions.
    [Show full text]
  • Significance of Heme and Heme Degradation in the Pathogenesis Of
    International Journal of Molecular Sciences Review Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders Stefan W. Ryter Proterris, Inc., Boston, MA 02118, USA; [email protected] Abstract: The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases. Keywords: acute lung injury; carbon monoxide; heme; heme oxygenase; inflammation; lung dis- ease; sepsis Citation: Ryter, S.W. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int. J. Mol. 1. Introduction Sci.
    [Show full text]
  • Designer Fungus FAD Glucose Dehydrogenase Capable of Direct Electron Transfer T
    Biosensors and Bioelectronics 123 (2019) 114–123 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Designer fungus FAD glucose dehydrogenase capable of direct electron transfer T Kohei Itoa, Junko Okuda-Shimazakib, Kazushige Morib, Katsuhiro Kojimab, Wakako Tsugawaa, ⁎ Kazunori Ikebukuroa, Chi-En Linc,Jeffrey La Bellec, Hiromi Yoshidad, Koji Sodea,b,e, a Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184- 8588, Japan b Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan c School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA d Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan e Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA ARTICLE INFO ABSTRACT Keywords: Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular Glucose dehydrogenase and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron Cellobiose dehydrogenase transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus Direct electron transfer flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cy- Designer FADGDH tochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode.
    [Show full text]
  • GAPDH Regulates Cellular Heme Insertion Into Inducible Nitric Oxide Synthase
    GAPDH regulates cellular heme insertion into inducible nitric oxide synthase Ritu Chakravartia, Kulwant S. Aulaka, Paul L. Foxb, and Dennis J. Stuehra,1 aDepartment of Pathobiology, and bDepartment of Cell Biology, Lerner Research institute, Cleveland Clinic Foundation, Cleveland, OH 44195 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 10, 2010 (received for review June 11, 2010) Heme proteins play essential roles in biology, but little is known NOS enzymes, hemoglobin, catalase, and cytochrome P450 (17). about heme transport inside mammalian cells or how heme is Importantly, the mechanism of NO action did not involve inserted into soluble proteins. We recently found that nitric oxide changes in heme availability or effects of NO on cellular energy (NO) blocks cells from inserting heme into several proteins, production or activation of soluble guanylate cyclase (17). The including cytochrome P450s, hemoglobin, NO synthases, and results implied that NO might act on an uncharacterized yet catalase. This finding led us to explore the basis for NO inhibition common cellular component or process to generally inhibit heme and to identify cytosolic proteins that may be involved, using insertion into proteins. This concept served as a starting point to inducible NO synthase (iNOS) as a model target. Surprisingly, we search for proteins that might drive and regulate intracellular found that GAPDH plays a key role. GAPDH was associated with heme insertion reactions in mammals. In our current study, we iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an used iNOS as a model heme protein target, and identify a cyto- solic protein that binds heme, functions in heme insertion, and is NO-sensitive manner.
    [Show full text]
  • Hepatic Cytochrome P450 Reductase-Null Mice As an Animal Model to Study Electron Transfer Pathways in Cholesterol Synthesis and Cyp2e1-Mediated Drug Metabolism
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2006 HEPATIC CYTOCHROME P450 REDUCTASE-NULL MICE AS AN ANIMAL MODEL TO STUDY ELECTRON TRANSFER PATHWAYS IN CHOLESTEROL SYNTHESIS AND CYP2E1-MEDIATED DRUG METABOLISM Li Li University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Li, Li, "HEPATIC CYTOCHROME P450 REDUCTASE-NULL MICE AS AN ANIMAL MODEL TO STUDY ELECTRON TRANSFER PATHWAYS IN CHOLESTEROL SYNTHESIS AND CYP2E1-MEDIATED DRUG METABOLISM" (2006). University of Kentucky Doctoral Dissertations. 417. https://uknowledge.uky.edu/gradschool_diss/417 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Li Li The Graduate School University of Kentucky 2006 HEPATIC CYTOCHROME P450 REDUCTASE-NULL MICE AS AN ANIMAL MODEL TO STUDY ELECTRON TRANSFER PATHWAYS IN CHOLESTEROL SYNTHESIS AND CYP2E1-MEDIATED DRUG METABOLISM ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in The Graduate School at the University of Kentucky By Li Li Lexington, Kentucky Director: Dr. Todd D. Porter, Associate Professor of Pharmaceutical Sciences College of Pharmacy 2006 Copyright © Li Li 2006 ABSTRACT OF DISSERTATION HEPATIC CYTOCHROME P450 REDUCTASE-NULL MICE AS AN ANIMAL MODEL TO STUDY ELECTRON TRANSFER PATHWAYS IN CHOLESTEROL SYNTHESIS AND CYP2E1-MEDIATED DRUG METABOLISM NADPH-cytochrome P450 reductase (CPR) is a flavoprotein containing both FAD and FMN and functions as the electron donor protein for several oxygenase enzymes found on the endoplasmic reticulum of eukaryotic cells, including cytochrome P450s involved in drug metabolism and cholesterol biosynthesis.
    [Show full text]