Mevalonate Pathway Provides Ubiquinone to Maintain Pyrimidine

Total Page:16

File Type:pdf, Size:1020Kb

Mevalonate Pathway Provides Ubiquinone to Maintain Pyrimidine Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0650 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Mevalonate pathway provides ubiquinone to maintain pyrimidine 2 synthesis and survival in p53-deficient cancer cells exposed to metabolic 3 stress 4 5 Irem, Kaymak1, Carina, R., Maier1, Werner, Schmitz1, Andrew, D., Campbell2, 6 Beatrice, Dankworth1, Carsten, P., Ade1, Susanne, Walz3, Madelon, Paauwe2, 7 Charis, Kalogirou4, Hecham, Marouf1, Mathias, T., Rosenfeldt5,6, David, M., 8 Gay2,7, Grace, H., McGregor2,7, Owen, J., Sansom2 and Almut, Schulze1,6$# 9 10 1 Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany 11 2 Cancer Research UK Beatson Institute, Garscube Estate Switchback Road 12 Bearsden Glasgow, G61 1BD 13 3 ComPrehensive Cancer Center Mainfranken, Core Unit Bioinformatics, 14 Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany 15 4 DePartment of Urology, University Hospital Würzburg, Josef-Schneider-Str. 2, 16 97080 Würzburg 17 5 DePartment of Pathology, University HosPital Würzburg, Josef-Schneider-Str. 18 2, 97080 Würzburg 19 6 ComPrehensive Cancer Center Mainfranken, Josef-Schneider-Str.6, 97080 20 Würzburg, Germany 21 7Institute of Cancer Sciences, University of Glasgow, Garscube Estate, 22 Switchback Road, Bearsden, Glasgow, G61 1QH 23 24 #Corresponding author 25 email: [email protected] 26 $Current address: Division of Tumor Metabolism and Microenvironment, 27 German Cancer Research Center, Im Neuenheimer Feld 281, 69120 28 Heidelberg, Germany ([email protected]) 29 Phone: +49 6221 42 3423 30 31 Running Title: Mevalonate pathway supports ubiquinone synthesis in cancer 32 Conflict of interest: The authors declare no competing financial interests. 33 Keywords: cancer metabolism; colon cancer; p53; mevalonate pathway; 34 SREBP2; ubiquinone; pyrimidine synthesis 1 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0650 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Abstract 2 Oncogene activation and loss of tumor suppressor function changes the 3 metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, 4 cancer cells adapt their metabolism to sustain growth and survival when access 5 to oxygen and nutrients is restricted, such as in poorly vascularized tumor 6 areas. We show here that p53-deficient colon cancer cells exposed to tumor- 7 like metabolic stress in spheroid culture activated the mevalonate pathway to 8 promote the synthesis of ubiquinone. This was essential to maintain 9 mitochondrial electron transport for respiration and pyrimidine synthesis in 10 metabolically compromised environments. Induction of mevalonate pathway 11 enzyme expression in the absence of p53 was mediated by accumulation and 12 stabilization of mature SREBP2. Mevalonate pathway inhibition by statins 13 blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and 14 apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, 15 ubiquinone produced by the mevalonate pathway was essential for the growth 16 of p53-deficient tumor organoids. In contrast, inhibition of intestinal 17 hyperproliferation by statins in an Apc/KrasG12D mutant mouse model was 18 independent of de novo pyrimidine synthesis. Our results highlight the 19 importance of the mevalonate pathway for maintaining mitochondrial electron 20 transfer and biosynthetic activity in cancer cells exposed to metabolic stress. 21 They also demonstrate that the metabolic output of this pathway depends on 22 both genetic and environmental context. 23 24 Significance: 25 p53-deficient cancer cells activate the mevalonate pathway via SREBP2 26 and promote the synthesis of ubiquinone that plays an essential role in reducing 27 oxidative stress and supports the synthesis of pyrimidine nucleotide 2 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0650 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Introduction 2 The metabolic activity of cancer cells is controlled by genetic alterations 3 and by the tumor microenvironment. Under metabolic stress, defined by 4 reduced access to nutrients and oxygen present in poorly vascularized solid 5 tumors, cancer cells need to adapt their metabolic activity to maintain cell 6 proliferation and survival. One important factor in the adaptation to metabolic 7 stress is the hypoxia inducible factor (HIF), which is stabilized and activated in 8 the absence of oxygen, and promotes the uptake of glucose and its 9 fermentation to lactate while reducing oxidative metabolism (1). However, poor 10 access to the vascular network not only reduces oxygen tension but also lowers 11 the availability of serum-derived nutrients. Therefore, cancer cells need to 12 undergo global rewiring of their metabolic activity to be able to adapt to these 13 conditions. 14 The p53 tumor suppressor is a master regulator of cellular metabolism 15 (2,3). It reduces glucose uptake (4) and alters glycolysis and modulates the flux 16 of metabolites into the pentose phosphate pathway (5-8). Conversely, p53 17 enhances mitochondrial metabolism by promoting the assembly of cytochrome 18 C oxidase (complex IV) and increasing respiration (9). It has been shown that 19 p53 allows cancer cells to adapt to nutrient deprivation, in particular the 20 absence of the amino acid serine and glutamine (10,11). Thus, loss of p53 21 function can increase the sensitivity of cancer cells towards metabolic stress, 22 resulting in a selective vulnerability that could be exploited therapeutically. 23 In this study, we have investigated the role of p53 in the regulation of 24 metabolic processes in colon cancer cells exposed to metabolic stress. In order 25 to recreate the simultaneous reduction in oxygen and nutrient availability found 26 in tumors, we cultured cancer cells as multicellular tumor spheroids. Under 27 these conditions, we find that p53-deficient cancer cells activate the expression 28 of enzymes of the mevalonate pathway via the sterol regulatory element 29 binding protein 2 (SREBP2). Moreover, inhibition of mevalonate pathway 30 activity with statins selectively induced apoptosis in p53-deficient cancer cells 31 exposed to metabolic stress. This effect was mediated by reduced generation 32 of ubiquinone (CoQ10), which p53-deficient cells require to maintain TCA cycle 33 activity, respiration and the synthesis of pyrimidine nucleotides. Our study thus 3 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0650 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 reveals a novel link between the regulation of isoprenoid synthesis and the 2 modulation of electron transfer mediated by ubiquinone in cancer cells. 3 Mevalonate pathway activity is essential for p53-deficient cancer cells to 4 proliferate and survive under the metabolic constraints of the tumor 5 microenvironment. 6 7 8 Materials and Methods 9 Tissue culture and reagents 10 HCT116 p53-isogenic cells were obtained from B. Vogelstein (Johns 11 Hopkins University, Baltimore) and HCT116 p21-isogenic cells from M. 12 Dobbelstein (Georg-August University, Göttingen). RKO p53-isogenic lines 13 were a gift from K.Vousden (Beatson Institute, Glasgow). All other cell lines 14 were from CRUK LRI Research Services, authenticated by STR profiling and 15 used at low passage. Unless stated otherwise, cells were cultured in DMEM 16 with 10% fetal bovine serum (FBS, Gibco), 4 mM L-glutamine and 1% penicillin- 17 streptomycin, at 37°C in a humidified incubator at 5% CO2 and regularly tested 18 for absence of mycoplasma. Etoposide, (R)-Mevalonic acid lithium salt, 19 SB216732, CHIR99021, simvastatin, zoledronic acid monohydrate, coenzyme 20 Q10, NAC, water-soluble cholesterol, uridine and 5-FU were all from Sigma. 21 MG132 and MK2206 were from Bertin Pharma, rapamycin from Cayman 22 Chemicals, mevastatin and YM-53601 from Biomol and nucleosides 23 (EmbryoMax 100x) from Merck-Milipore. 24 25 Spheroid formation, flow cytometry and histology 26 For spheroid formation, 10,000 cells/well were placed in 96-well ultralow 27 attachment plates (Corning® CORN7007) followed by centrifugation at 850g 28 for 10 min. Spheroids were cultured for 12-14 days, during which medium was 29 replaced every three days. 30 Monolayer and spheroid cells were incubated with 20 µM BrdU (Sigma) 31 for 24 hrs, trypsinized and fixed in 80% EtOH. Cells incubated in 2 M HCl with 32 0.5% Triton X-100 for 30 min at room temperature, neutralized with Na2B4O7. 33 and incubated with anti-BrdU-FITC antibodies (Biozol). Cells were washed, 4 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0650 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Recommended publications
  • ASPP2 Inhibits Tumor Growth by Repressing the Mevalonate Pathway
    Liang et al. Cell Death and Disease (2019) 10:830 https://doi.org/10.1038/s41419-019-2054-7 Cell Death & Disease ARTICLE Open Access ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma Beibei Liang1,RuiChen2, Shaohua Song3,HaoWang4,GuoweiSun5, Hao Yang1,WeiJing6, Xuyu Zhou6,ZhirenFu3, Gang Huang1 and Jian Zhao1 Abstract Cancer is, fundamentally, a disorder of cell growth and proliferation, which requires adequate supplies of energy and nutrients. In this study, we report that the haplo-insufficient tumor suppressor ASPP2, a p53 activator, negatively regulates the mevalonate pathway to mediate its inhibitory effect on tumor growth in hepatocellular carcinoma (HCC). Gene expression profile analysis revealed that the expression of key enzymes in the mevalonate pathway were increased when ASPP2 was downregulated. HCC cells gained higher cholesterol levels and enhanced tumor-initiating capability in response to the depletion of ASPP2. Simvastatin, a mevalonate pathway inhibitor, efficiently abrogated ASPP2 depletion-induced anchorage-independent cell proliferation, resistance to chemotherapy drugs in vitro, and tumor growth in xenografted nude mice. Mechanistically, ASPP2 interacts with SREBP-2 in the nucleus and restricts the transcriptional activity of SREBP-2 on its target genes, which include key enzymes involved in the mevalonate pathway. Moreover, clinical data revealed better prognosis in patients with high levels of ASPP2 and low levels of the mevalonate pathway enzyme HMGCR. Our findings provide functional and mechanistic insights into the critical role of ASPP2 in the regulation of the mevalonate pathway and the importance of this pathway in tumor initiation and tumor growth, which may provide a new therapeutic opportunity for HCC.
    [Show full text]
  • Dolichol Monophosphate Glucose: an Intermediate in Glucose Transfer in Liver* Nicolfis H
    Proceedings of the National Academy of Sciences Vol. 66, No. 1, pp. 153-159, May 1970 Dolichol Monophosphate Glucose: An Intermediate in Glucose Transfer in Liver* Nicolfis H. Behrenst and Luis F. Leloir4 INSTITUTO DE INVESTIGACIONES BIOQUfMICAS "FUNDACI6N CAMPOMAR" AND FACULTAD DE CIENCIAS EXACTAS Y NATURALES, BUENOS AIRES, ARGENTINA Communicated February 9, 1970 Abstract. The microsomal fraction of liver has been found to catalyze glucose transfer from UDPG to a lipid acceptor which appears to be identical to the compound obtained by chemical phosphorylation of dolichol. The substance formed (dolichol monophosphate glucose) is acid labile and yields 1,6-anhydro- glucosan by alkaline treatment. It can be used as substrate by the enzyme system yielding a glucoprotein which is subsequently hydrolyzed to glucose. One of the most important developments in the field of saccharide biosynthesis has been the discovery of lipid intermediates in sugar transfer reactions. The studies of Wright et al.1 on 0-antigen and of Higashi et al.2 on peptidoglucan syn- thesis in bacteria showed that polyprenol pyrophosphate sugars are formed by transfer from nucleotide sugars and subsequently act as donors for polysaccharide formation. As shown by Scher et al.,3 similar events occur in M. lysodeikticus where mannose is first transferred from GDP-mannose to undecaprenol mono- phosphate and then to mannan. In animal tissues an enzyme has been described which catalyzes mannose transfer from GDP-mannose to a lipid.4 In the course of work with UDPG it has now been found that liver contains enzymes which catalyze the following reactions: UDPG + acceptor lipid G-acceptor lipid + UDP (1) G-acceptor lipid + protein acceptor lipid + G-protein (2) G-protein -- G + protein (3) Since the rate of formation of glucosylated acceptor lipid by reaction (1) is proportional to the acceptor lipid added, the latter could be estimated and puri- fied.
    [Show full text]
  • Of Mevalonate Metabolism'
    ICANCER RESEARCH57. 3498—3505.AugustIS. 9971 Regulation of Proliferation and Ras Localization in Transformed Cells by Products of Mevalonate Metabolism' Jennifer A. Cuthbert2 and Peter E. Lipsky Department of Internal Medicine. The Unit'ersitv of Texas Southwestern Medical (‘enterat Dallas. Dallas. Texas 75235-9151 ABSTRACT position 186, the removal of the three COOH-terminal amino acids at positions 187—189, and carboxymethylation of the new COOH-termi Lovastatin, an inhibitor of 3-hydroxy.3-methylglutaryl (HMG) CoA nab cysteine. In addition, either palmitybation of other cysteine resi reductase, and 6-fluoromevalonate (Fmev), an inhibitor of diphospho dues in the COOH terminus (H-Ras, N-Ras, and K-RasA) or a mevalonate decarboxylase, blocked the synthesis of downstream meval. onate products, including prenyl-derived lipids, and prevented membrane pobybasic domain (K-RasB) is important in enhancing membrane localization of Ras in the myeloid cell line U.937. In contrast to lovastatin, association (7). These processes occur stepwise, and the first step, that which induced cytosol localization of Ras in U-937 cells, Fmev failed to of farnesybation of the full-length polypeptide, is thereby essential for increase cytosolic Ras and also completely prevented the proliferation of plasma membrane localization (12—14).Thus, compounds and muta U.937 cells. Growth of U-937 cells was restored by the addition of lovas tions that block the process of farnesylation interfere with the trans tatin to Fmev-blocked cells. These results implied that a product of formation and proliferation that are dependent upon mutationally mevalonate metabolism proximal to isopentenyl diphosphate was respon. activated Ras.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | watch?v=56vQ0S2eAjw SPEAKER 1: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. PROFESSOR: Today what I want to do within the lexicon is tell you about nature's most spectacularly beautiful cofactors. And these are formed from vitamin B-12, which you find in your vitamin bottle. OK. So what is the structure of vitamin B-12, and why do I say they are spectacularly beautiful? So it's very hard to see, but if you look at the structure of this, where have you seen a molecule this complicated with five membered rings, each of which has a nitrogen in this? You've seen this when you studied hemoglobin, and you think about heme and proto protoporphyrin IX. If you look at the biosynthetic pathway of heme, a branchpoint of that pathway is to make this ring, which is found in adenosylcobalamin and methylcobalamin, which is what we're going to be focusing on today. And this ring is called the corrin ring. So what I want to do is introduce you a little bit to this corrin ring and what's unusual about it compared to protoporphyrin IX that you've seen before. So the vitamin, as in the case of all vitamins that we've talked about over the course of the semester, is not the actual cofactor used in the enzymatic transformation.
    [Show full text]
  • Glycoprotein Synthesis in Maize Endosperm Cells the NUCLEOSIDE DIPHOSPHATE-SUGAR: DOLICHOL-PHOSPHATE GLYCOSYLTRANSFERASES
    Plant Physiol. (1988) 87, 420-426 0032-0889/88/87/0420/07/$01 .00/0 Glycoprotein Synthesis in Maize Endosperm Cells THE NUCLEOSIDE DIPHOSPHATE-SUGAR: DOLICHOL-PHOSPHATE GLYCOSYLTRANSFERASES Received for publication September 14, 1987 and in revised form January 4, 1988 WALTER E. RIEDELL' AND JAN A. MIERNYK* Seed Biosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Northern Regional Research Center, Peoria, Illinois 61604 ABSTRACT dolichol (24). Studies with mammalian cells and yeast (16, 32) have shown Microsomal membrane preparations from maize (Zea mays L., inbred that the enzymes of the dolichol cycle are associated with the A636) endosperm cultures contained enzymes that transferred sugar moie- ER. The assembly of Man,GlcNAc2-PP-dolichol is thought to ties from uridine diphosphate-N-acetylglucosamine, guanosine diphos- take place on the cytoplasmic surface of the ER. Subsequently, phate-mannose, and uridine diphosphate-glucose to dolichol-phosphate. this oligosaccharide is translocated to the lumen of the ER where These enzyme activities were characterized with respect to detergent and additional Man- and Glc-residues are transferred from lipid-car- pH optima, substrate kinetic constants, and product and antibiotic in- riers, forming the final tetradeccasaccharide-PP-lipid (21, 33). hibition constants. It was demonstrated by mild acid hydrolysis and high The oligosaccharide is then transferred en bloc from the lipid performance liquid chromatography that the products of the N-acetyl- carrier to the nascent polypeptide in a cotranslational event (21). glucosamine transferases were N-acetylglucosamine-pyrophosphoryl-dol- The first steps of oligosaccharide processing (e.g. removal of ichol and N,N'-diacetyl-chitobiosyl-pyrophosphoryl-dolichol and that the terminal glucose residues and, in mammalian cells, at least one product of the mannose transferase was mannosyl-phosphoryl-dolichol.
    [Show full text]
  • Construction and Optimization of Mevalonate Pathway for Production Of
    Construction and Optimization of Mevalonate Pathway for Production of Isoprenoids in Escherichia coli by Farnaz Nowroozi A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with University of California, San Francisco in Engineering-Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jay D. Keasling, Chair Professor Adam P. Arkin Professor Francis C. Szoka Professor Marc K. Hellerstein Fall 2009 1 The dissertation of Farnaz Foroughi-Boroujeni Nowroozi, titled Construction and Optimization of Mevalonate Pathway for production of Isoprenoids in Escherichia coli , is approved: Chair _______________________________ Date ____________________ _______________________________ Date____________________ _______________________________ Date ____________________ _______________________________ Date ____________________ University of California, Berkeley 2 Abstract Construction and Optimization of Mevalonate Pathway for production of Isoprenoids in Escherichia coli by Farnaz Foroughi-Boroujeni Nowroozi Doctor of Philosophy in Bioengineering University of California, Berkeley Professor Jay D. Keasling, Chair The isoprenoid family, containing over 50,000 members, constitutes one of the most structurally diverse groups of natural products. They range from essential and relatively universal primary metabolites, such as sterols, carotenoids, and hormones, to more unique secondary metabolites that serve roles in plant defense and communication and cellular and organismal development. Although these molecules have vast potential in medicine and industry their production is limited by two factors: 1- The yields from harvest and extraction of these compounds from their native sources are low 2- Due to their complex structure, synthetic routes to most isoprenoids are difficult and inefficient Therefore engineering metabolic pathways for production of large quantities of isoprenoids in a microbial host is an attractive approach.
    [Show full text]
  • Associated with Low Dehydrodolichol Diphosphate Synthase (DHDDS) Activity S
    Sabry et al. Orphanet Journal of Rare Diseases (2016) 11:84 DOI 10.1186/s13023-016-0468-1 RESEARCH Open Access A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity S. Sabry1,2,3,4, S. Vuillaumier-Barrot1,2,5, E. Mintet1,2, M. Fasseu1,2, V. Valayannopoulos6, D. Héron7,8, N. Dorison8, C. Mignot7,8,9, N. Seta5,10, I. Chantret1,2, T. Dupré1,2,5 and S. E. H. Moore1,2* Abstract Background: Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. Results: Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-3H]mannose labeled glycoprotein to [2-3H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient.
    [Show full text]
  • Engineering a Mevalonate Pathway in Escherichia Coli for Production of Terpenoids
    ARTICLES Engineering a mevalonate pathway in Escherichia coli for production of terpenoids Vincent JJ Martin1,2,3, Douglas J Pitera1,3,Sydnor T Withers1,Jack D Newman1 & Jay D Keasling1 Isoprenoids are the most numerous and structurally diverse family of natural products. Terpenoids, a class of isoprenoids often isolated from plants, are used as commercial flavor and fragrance compounds and antimalarial or anticancer drugs. Because plant tissue extractions typically yield low terpenoid concentrations, we sought an alternative method to produce high-value terpenoid compounds, such as the antimalarial drug artemisinin, in a microbial host. We engineered the expression of a synthetic amorpha-4,11-diene synthase gene and the mevalonate isoprenoid pathway from Saccharomyces cerevisiae in Escherichia coli. Concentrations of amorphadiene, the sesquiterpene olefin precursor to artemisinin, reached 24 µg caryophyllene equivalent/ml. Because isopentenyl and dimethylallyl pyrophosphates are the universal precursors to all isoprenoids, the strains developed in this study can serve as platform hosts for the production of any terpenoid compound for which a terpene synthase gene is available. http://www.nature.com/naturebiotechnology Terpenoids comprise a highly diverse class of natural products from certain cancers10,11, and irufloven, a third-generation semisynthetic which numerous commercial flavors, fragrances and medicines are analog of the sesquiterpene illudin S that are in late-stage clinical derived. These valuable compounds are commonly isolated from trials for the treatment of various refractory and relapsed can- plants, microbes and marine organisms. For example, terpenoids cers12,13.In general, these drugs are extracted from the host plant, in extracted from plants are used as anticancer and antimalarial which they accumulate in very small amounts, before further drugs1,2.Because these compounds are naturally produced in small derivatization or use.
    [Show full text]
  • TIBS-Revised Eichler and Imperiali-2017-Withfigs
    Stereochemical Divergence of Polyprenol Phosphate Glycosyltransferases The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Eichler, Jerry, and Barbara Imperiali. “Stereochemical Divergence of Polyprenol Phosphate Glycosyltransferases.” Trends in Biochemical Sciences 43, no. 1 (January 2018): 10–17. As Published https://doi.org/10.1016/j.tibs.2017.10.008 Publisher Elsevier Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/119846 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Stereochemical divergence of polyprenol phosphate glycosyltransferases Jerry Eichler1 and Barbara Imperiali2 1Dept. of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel 2Dept. of Biology and Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge MA, USA *correspondence to: [email protected] (Jerry Eichler) or [email protected] (Barbara Imperiali) Keywords: Dolichol phosphate, dolichol phosphate glucose synthase, dolichol phosphate mannose synthase, polyprenol phosphate, protein glycosylation, stereochemistry 1 Abstract In the three domains of life, lipid-linked glycans contribute to various cellular processes, ranging from protein glycosylation to glycosylphosphatidylinositol anchor biosynthesis to peptidoglycan assembly. In generating many of these glycoconjugates, phosphorylated polyprenol-based lipids are charged with single sugars by polyprenol
    [Show full text]
  • Mevalonic Acid Products As Mediators of Cell Proliferation in Simian Virus 40-Transformed 3T3 Cells1
    [CANCER RESEARCH 47. 4825-4829, September IS, 1987] Mevalonic Acid Products as Mediators of Cell Proliferation in Simian Virus 40-transformed 3T3 Cells1 Olle Larsson2 and Brht-Marie Johansson Department of Tumor Pathology, Karolinska Institute!, Karolinska Hospital, S-104 01 Stockholm, Sweden ABSTRACT GI, designated dpm (13). dprn was found to be of relative constant length (3 to 4 h) followed by the pre-DNA-synthetic Effects of treatment with serum-free medium and 25-hydroxycholes- terol (2S-OH) on the cell cycle of simian virus 40-transformed 3T3 part of GI, designated Gips, with a variable length (13). The fibroblasts, designated SV-3T3 cells, were studied and compared with progression through G,pm was also found to be very sensitive simultaneous effects on the activity of 3-hydroxy-3-methylglutaryl to inhibition of de novo protein synthesis, indicating that labile (HMG) CoA reducíase and incorporation of |3H|mevalonic acid into proteins or enzymes are involved in the growth commitment cholesterol, Coenzyme Q, and dolichol. The data confirm our previous process (13). In our search for candidates for cell cycle media finding (O. Larsson and A. Zetterberg, Cancer Res., 46: 1233-1239, tors we have focused our interest on the enzyme HMG CoA 1986) that 25-OH inhibits the cell cycle traverse of SV-3T3 cells specif reducíase,3which is the rate-limiting enzyme in the synthesis ically in early (.,. In contrast, treatment with serum-free medium had no of cholesterol and isoprenoid derivatives (15). In a recent study effect on cell cycle progression. The effect of 25-OH on the cell cycle we compared the effects of serum starvation with the effects of traverse was correlated to a substantial decrease in the activity of HMG treatment by an inhibitor of HMG CoA reductase, 25-OH, on CoA reductase, whereas there was no change in the rate of |3H|mevalonic the G, transition in 3T3,3T6, and SV 3T3 cells (14).
    [Show full text]
  • Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
    cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
    [Show full text]