Kant's Dynamical Theory of Matter 1755-SHPS-Second Resubmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vision, Color Innateness and Method in Newton's Opticks
CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication Vision, Color Innateness and Method in Newton’s Opticks Philippe Hamou To cite this version: Philippe Hamou. Vision, Color Innateness and Method in Newton’s Opticks. Biener, Zvi and Schliesser, Eric. Newton and Empiricism, Oxford University Press, 2014, 978-0-19-933709-5. hal- 01551257 HAL Id: hal-01551257 https://hal-univ-paris10.archives-ouvertes.fr/hal-01551257 Submitted on 21 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Feb 10 2014, NEWGEN 3 Vision, Color Innateness, and Method in Newton’s Opticks Philippe Hamou1 Inthis essay I argue for the centrality of Newton’s theory of vision to his account of light and color.Relying on psycho-physical experiments, anatomical observations, and physical hypotheses, Newton, quite early in his career, elaborated an original, although largely hypothetical,theory of vision, to which he remained faithful through- out his life. The main assumptions of this theory, I urge,play an important (although almost entirely tacit) role in the demonstration of one of the most famous theses of the Opticks: the thesis thatspectral colors are “innately” present in white solar light. -
ABSTRACT CAUSAL PROGRAMMING Joshua Brulé
ABSTRACT Title of dissertation: CAUSAL PROGRAMMING Joshua Brul´e Doctor of Philosophy, 2019 Dissertation directed by: Professor James A. Reggia Department of Computer Science Causality is central to scientific inquiry. There is broad agreement on the meaning of causal statements, such as \Smoking causes cancer", or, \Applying pesticides affects crop yields". However, formalizing the intuition underlying such statements and conducting rigorous inference is difficult in practice. Accordingly, the overall goal of this dissertation is to reduce the difficulty of, and ambiguity in, causal modeling and inference. In other words, the goal is to make it easy for researchers to state precise causal assumptions, understand what they represent, understand why they are necessary, and to yield precise causal conclusions with minimal difficulty. Using the framework of structural causal models, I introduce a causation coeffi- cient as an analogue of the correlation coefficient, analyze its properties, and create a taxonomy of correlation/causation relationships. Analyzing these relationships provides insight into why correlation and causation are often conflated in practice, as well as a principled argument as to why formal causal analysis is necessary. Next, I introduce a theory of causal programming that unifies a large number of previ- ously separate problems in causal modeling and inference. I describe the use and implementation of a causal programming language as an embedded, domain-specific language called `Whittemore'. Whittemore permits rigorously identifying and esti- mating interventional queries without requiring the user to understand the details of the underlying inference algorithms. Finally, I analyze the computational com- plexity in determining the equilibrium distribution of cyclic causal models. -
Keeping the Promise: Phys Rev Completes Online Archive the Physical Review Be Explored
August/September 2001 NEWS Volume 10, No. 8 A Publication of The American Physical Society http://www.aps.org/apsnews Keeping the Promise: Phys Rev Completes Online Archive The Physical Review be explored. The earliest volumes institutions and others to link to Online Archive or of the journals can be examined at APS publications, both current ma- PRL Gets a PROLA is now com- length, in detail and at ease. Histo- terial and PROLA. Authors are also plete: every paper in rians and biographers can track the free to mount their Physical Review New Face every journal that APS expansion of the knowledge of papers on their own sites. has published since physics that took place over the PROLA is composed of scanned 1893 (excepting the previous century in Physical Review. images of the printed journals, op- present and past three Research published in Physical Re- tical character recognition (OCR) years, which are held view by any particular author or material, and a searchable separately for current group or institution can be col- richly-tagged XML bibliographic subscribers) mounted lected and perused with a search database. Each year, another year online in a friendly, of PROLA and a second search of of this material is added to PROLA Bob Kelly/APS powerful, fully search- PROLA team at APS Editorial Office in Ridge, NY: Louise current content. Journalists can ac- from the current subscription con- able system. The project Bogan; Paul Dlug; Mark Doyle, Project Manager; Maxim cess physics Nobel Prize winning tent; 1997 was added in January took just under ten Gregoriev; Gerard Young; Rosemary Clark. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Analogies in Physics Analysis of an Unplanned Epistemic Strategy
. Analogies in Physics Analysis of an Unplanned Epistemic Strategy Von der Philosophischen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktors der Philosophie Dr. phil. Genehmigte Dissertation von Ing. grad. MA Gunnar Kreisel Erscheinungs- bzw. Druckjahr 2021 Referent: Prof. Dr. Mathias Frisch Korreferent: Prof. Dr. Torsten Wilholt Tag der Promotion: 26.10.2020 2 To my early died sister Uta 3 Acknowledgements I could quote only very few by name who have contributed to my work on this thesis, for discussing some of the developed ideas with me or comments on parts of my manuscript. These are in the first place my advisor Mathias Frisch and further Torsten Wilholt, who read critically individual chapters. Much more have contributed by some remarks or ideas mentioned in passing which I cannot assign to someone explicitly and therefore must be left unnamed. Also, other people not named here have supported my work in the one or other way. I think they know who were meant if they read this. A lot of thanks are due to Zoe Vercelli from the International Writing centre at Leibniz University Hannover improving my English at nearly the whole manuscript (some parts are leaved to me because of organisational changes at the writing centre). So, where the English is less correct Zoe could not have had a look on it. Of course, all errors and imprecisions remain in solely my responsibility. 4 Abstract This thesis investigates what tools are appropriate for answering the question how it is possible to develop such a complex theory in physics as the standard model of particle physics with only an access via electromagnetic interaction of otherwise unobservable objects and their interactions it was investigated what the tools are to do this. -
Guides to the Royal Institution of Great Britain: 1 HISTORY
Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science. -
November 2019
A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September. -
QUERIES 'N THEORIES: an Instructional Game on the DOT, DOT, DOT
University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1974 QUERIES 'N THEORIES: An Instructional Game on the DOT, DOT, DOT... Approach to Scientific Method Layman E. Allen University of Michigan Law School, [email protected] Available at: https://repository.law.umich.edu/articles/552 Follow this and additional works at: https://repository.law.umich.edu/articles Part of the Science and Technology Law Commons Recommended Citation Allen, Layman E. "QUERIES 'N THEORIES: An Instructional Game on the DOT, DOT, DOT... Approach to Scientific eM thod." Instructional Sci. 3 (1974): 205-29. This Article is brought to you for free and open access by the Faculty Scholarship at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Articles by an authorized administrator of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. Instructional Science 3 ( 1974)205-224 © Elsevier Scientific Publishing Company, Amsterdam - Printed in the Netherlands. QUERIES 'N THEORIES: AN INSTRUCTIONAL GAME ON THE DOT, DOT, DOT,... APPROACH TO SCIENTIFIC METHOD LAYMAN E. ALLEN University of Michigan ABSTRACT QUERIES 'N THEORIES provides a parallel to the strong inference approach to scientific method - designing experiments, observing data, and theorizing. The reiter- ated use of the DOT approach (Design, Observe, Theorize) in the problem-solving required by the game mirrors the regular, systematic application of strong inference in some areas of science (e.g., high energy physics and molecular biology) that have moved ahead much more rapidly than others. Moreover, the game embodies and provides practice in two aspects of scientific theorizing and designing which John Platt has pointed out as central to scientific advance: (1) the usefulness of multiple hypotheses and (2) disproof as science's mode of advance. -
Newton As Philosopher
This page intentionally left blank NEWTON AS PHILOSOPHER Newton’s philosophical views are unique and uniquely difficult to categorize. In the course of a long career from the early 1670s until his death in 1727, he articulated profound responses to Cartesian natural philosophy and to the prevailing mechanical philosophy of his day. Newton as Philosopher presents Newton as an original and sophisti- cated contributor to natural philosophy, one who engaged with the principal ideas of his most important predecessor, René Descartes, and of his most influential critic, G. W. Leibniz. Unlike Descartes and Leibniz, Newton was systematic and philosophical without presenting a philosophical system, but, over the course of his life, he developed a novel picture of nature, our place within it, and its relation to the creator. This rich treatment of his philosophical ideas, the first in English for thirty years, will be of wide interest to historians of philosophy, science, and ideas. ANDREW JANIAK is Assistant Professor in the Department of Philosophy, Duke University. He is editor of Newton: Philosophical Writings (2004). NEWTON AS PHILOSOPHER ANDREW JANIAK Duke University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521862868 © Andrew Janiak 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. -
GRIER-THESIS.Pdf
HYPOTHESIS NON FINGO: THE DEVELOPMENT OF ISAAC NEWTON’S LITERARY TECHNOLOGY A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Arts In the Department of History University of Saskatchewan Saskatoon By JASON GRIER Copyright Jason Grier, August, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of History University of Saskatchewan Saskatoon, Saskatchewan S7N 5A5 i ABSTRACT This thesis examines a dispute between Isaac Newton and Robert Hooke during the 1670s over Newton’s “New theory about light and colour.” The controversy offers a fascinating window into the development of Newton's literary methodology for the presentation of his experimental facts. -
Principles in Newton's Natural Philosophy
In Peter Anstey (ed.) (2017) The Idea of Principles in Early Modern Thought: Interdisciplinary Perspectives. Routledge, New York. Principles in Newton’s Natural Philosophy Kirsten Walsh (Philosophy, Nottingham) Abstract Newton’s great work of ‘rational mechanics’ is supposedly about principles. They’re even in the title: Philosophiae naturalis principia mathematica. However, Newton’s use of the term ‘principle’ appears to be unsystematic and opaque. Was ‘principle’, then, just a ‘buzz- word’ for Newton? Or is there something important underlying his use of the term? I support the latter. While the term ‘principle’ did not play a central role in Newton’s methodology (indeed, I will suggest that hypotheses and theories are the important concepts for Newton), once we disambiguate his usage, something systematic arises. What it takes to be a principle, by Newton’s lights, is to play a certain kind of role. 0 Introduction Natural philosophy should be founded not on metaphysical opinions, but on its own principles (An unpublished preface to the Principia).1 As this volume attests, principles mattered in the early modern period. Calling a proposition a ‘principle’ signalled its importance. It told you that the proposition was, for example, foundational, universal, essential, self-evident or demonstrable. Principles played a central role in the philosophies of Leibniz, Spinoza and Hume, to name just a few of the figures featured in this volume. Newton’s great work of ‘rational mechanics’ is supposedly about principles. It’s even in the title: Philosophiae naturalis principia mathematica (Mathematical Principles of Natural Philosophy). And in his preface to the first edition (1686), Newton expressed his hope that 1 Translation quoted in (Newton, 1999: 54). -
12. Heaviside and Ether Models
12. Telegraphy and Ether Models. Hunt (1991), Chaps 3 & 4. A. Growth and Development of Telegraphy • 1851. First submarine cable under English Channel from Dover to Calais. • 1858. First attempt to lay Atlantic cable fails after just a month of service. • 1866. Successful replacement. • By 1885: Nearly 100,000 miles of submarine cable lain; majority by British companies 1866 Cable. • 1860s. British cable engineers unrivaled in the world. • Cable testing rooms: best-equipped electrical laboratories at the time. • 1871. Society of Telegraph Engineers founded. ! Later changes name to Institution of Electrical Engineers (1889), and merges with Institution of Incorporated Engineers to form current Institution of Engineering and Technology (2006). 1858 Cable. • 1861. British Association for the Advancement of Science establishes Committee on Electrical Standards. ! Committee members include Maxwell and Thomson: "the important applications of electromagnetism to telegraphy have... reacted on pure science by giving a commercial value to accurate electrical measurements, and by affording to electricians the use of apparatus on a scale which greatly transcends that of any ordinary laboratory. The con-sequences of this demand for elecgrical knowledge, and of these experimental opportunities for acquiring it, have been already very great, both in stimulating the energies of advanced electricians, and in diffusing among practical men a degree of accurate knowledge which is likely to conduce to the general scientific progress of the whole engineering profession." B. Field Theory and Telegraphy • 1853. New Anglo-Dutch cable experiences distortion: pulses through cables delayed and elongated; signals sent in rapid succession unreadable at receiver. Recall Faraday's views: ! Electric charge = manifestation on surface of a conductor of a state of strain in the surrounding medium.