Analogies in Physics Analysis of an Unplanned Epistemic Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Analogies in Physics Analysis of an Unplanned Epistemic Strategy . Analogies in Physics Analysis of an Unplanned Epistemic Strategy Von der Philosophischen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktors der Philosophie Dr. phil. Genehmigte Dissertation von Ing. grad. MA Gunnar Kreisel Erscheinungs- bzw. Druckjahr 2021 Referent: Prof. Dr. Mathias Frisch Korreferent: Prof. Dr. Torsten Wilholt Tag der Promotion: 26.10.2020 2 To my early died sister Uta 3 Acknowledgements I could quote only very few by name who have contributed to my work on this thesis, for discussing some of the developed ideas with me or comments on parts of my manuscript. These are in the first place my advisor Mathias Frisch and further Torsten Wilholt, who read critically individual chapters. Much more have contributed by some remarks or ideas mentioned in passing which I cannot assign to someone explicitly and therefore must be left unnamed. Also, other people not named here have supported my work in the one or other way. I think they know who were meant if they read this. A lot of thanks are due to Zoe Vercelli from the International Writing centre at Leibniz University Hannover improving my English at nearly the whole manuscript (some parts are leaved to me because of organisational changes at the writing centre). So, where the English is less correct Zoe could not have had a look on it. Of course, all errors and imprecisions remain in solely my responsibility. 4 Abstract This thesis investigates what tools are appropriate for answering the question how it is possible to develop such a complex theory in physics as the standard model of particle physics with only an access via electromagnetic interaction of otherwise unobservable objects and their interactions it was investigated what the tools are to do this. The answer is found in the usage of essentially two types of analogies. These two types are explanatory and predictive analogies. Explanatory analogies are needed to link observed new phenomena to accepted scientific theoretical models of well-known phenomena, predictive analogies to find in possible experiments further new phenomena not already observed. The possibilities of observation and the related conditions are the main reason to use analogies as well in the development of theories, as in the representation of experiments especially in high energy physics, because there we find only charged particles observable via electromagnetic interaction. Other neutral particles with no charge are concludable only by visualization of their assumed tracks filling the gaps between the tracks of charged and therefore in some way observable particles. Today this is only possible with the help of computers evaluating the huge amount of data delivered by extremely complex detectors using the electromagnetic interaction in different ways. This visualization is also a kind of analogy because in fact all the particles are not observable directly, only their electromagnetic interaction if it occurs. My investigation considered reasons for the following questions: Why in philosophy of science analogies were neglected during about one hundred years? How can analogies be characterized? And at last, as point of origination for my investigation where have analogies played an important role the development of high energy physics from the explanation of the constitution of the atomic core to the postulation of quarks, mainly in original publications? Important in this task is especially the consideration of the context which determines in some way the possible directions of development, however, no direction of development in general. The intention in my thesis was to shed some more light on the epistemological side of scientific work in physics and how analogies could help enabling this task. The method used was primarily text analysis of mostly original publications of leading physicists. Keywords: analogy, observation, epistemology, high energy physics 5 Contents 1 Introduction ..................................................................................................................................... 9 2 Philosophy of Science and the Scientific Practices in Physics ....................................................... 15 2.1 Physicists and Philosophy of Science .................................................................................... 16 2.2 Philosophy of Science and Metaphysics ................................................................................ 19 2.3 Philosophy of Science and Theoretical Construction ............................................................ 25 2.4 Philosophy of Science and Models ........................................................................................ 30 2.5 Summary................................................................................................................................ 33 3 Analogies in Theoretical Practices ................................................................................................. 33 3.1 The Theory of the “Strong Interaction” and its Problems ..................................................... 35 3.2 How to Classify the New Detected Particles? ....................................................................... 39 3.3 Postulating Quarks by Analogy as Solution ........................................................................... 43 3.4 Summary................................................................................................................................ 49 4 The Role of Analogies .................................................................................................................... 50 4.1 Epistemological Model of Gaining Knowledge in High Energy Physics ................................. 50 4.2 Characterization of Analogies ............................................................................................... 53 4.2.1 On the Indispensability of Analogies in Science ............................................................ 53 4.2.2 Formal Aspects .............................................................................................................. 64 4.2.3 Observability .................................................................................................................. 70 4.3 From the Atomic Nucleus to Quarks ..................................................................................... 74 4.3.1 Heisenberg’s Theory of the Atomic Nucleus and Yukawa’s Theory of Force ................ 74 4.3.2 Theories on Strange Particles ........................................................................................ 82 4.3.3 The Way to Quarks ........................................................................................................ 90 4.4 Summary................................................................................................................................ 99 5 Experimental Practices and the Role of Limited Access .............................................................. 100 5.1 The Cloud Chamber and Electronic Counters ..................................................................... 101 5.2 The Predomination of Visual Techniques ............................................................................ 108 5.3 Visual Techniques with Electronic Counters ....................................................................... 112 5.4 Summary.............................................................................................................................. 121 6 On a Theory of Development in Modern Physics ........................................................................ 121 6.1 A Model of Development in Modern Physics ...................................................................... 122 6.1.1 Step One: Observation of Phenomena ........................................................................ 122 6.1.2 Step Two: Prior Association ......................................................................................... 122 6.1.3 Step Three: Explanatory Analogy ................................................................................ 124 6.1.4 Step Four: Extension of the Explanatory Analogy ....................................................... 125 6.1.5 Step Five: Predictive Analogy ...................................................................................... 126 6 6.1.6 Step Six: Experimental Confirmation ........................................................................... 127 6.1.7 Step Seven: Acceptance of the Theory ........................................................................ 128 6.2 Analogies and Observability ................................................................................................ 128 6.3 Analogies and Visualization ................................................................................................. 131 6.4 Analogies and History .......................................................................................................... 133 6.5 Analogies and Metaphysics ................................................................................................. 136 6.6 Summary.............................................................................................................................. 138 7 Conclusions .................................................................................................................................. 140 8 References ..................................................................................................................................
Recommended publications
  • Philósophos N. 2 V. 9
    DOSSIÊS MODELS AND THE DYNAMICS OF THEORIES Paulo Abrantes Universidade de Brasília [email protected] Abstract: This paper gives a historical overview of the ways various trends in the philosophy of science dealt with models and their relationship with the topics of heuristics and theoretical dynamics. First of all, N. Campbell’s account of analogies as components of scientific theories is presented. Next, the notion of ‘model’ in the reconstruction of the structure of scientific theories proposed by logical empiricists is examined. This overview finishes with M. Hesse’s attempts to develop Campbell’s early ideas in terms of an analogical inference. The final part of the paper points to contemporary developments on these issues which adopt a cognitivist perspective. It is indicated how discussions in the cognitive sciences might help to flesh out some of the insights philosophers of science had concerning the role models and analogies play in actual scientific theorizing. Key words: models, analogical reasoning, metaphors in science, the structure of scientific theories, theoretical dynamics, heuristics, scientific discovery. Hesse (1976) suggests that different philosophical explications of the roles models play in science correspond to different models of science. As a matter of fact, the explication of scientific modeling became a central issue in the criticism and revision of logical empiricism in the 50’s and the 60’s. The critics of the logical empiricist explication of models pointed out that it doesn’t capture one of the roles models play in science: that of providing guidelines for the development of theories.1 PHILÓSOPHOS 9 (2) : 225-269, jul./dez.
    [Show full text]
  • Keeping the Promise: Phys Rev Completes Online Archive the Physical Review Be Explored
    August/September 2001 NEWS Volume 10, No. 8 A Publication of The American Physical Society http://www.aps.org/apsnews Keeping the Promise: Phys Rev Completes Online Archive The Physical Review be explored. The earliest volumes institutions and others to link to Online Archive or of the journals can be examined at APS publications, both current ma- PRL Gets a PROLA is now com- length, in detail and at ease. Histo- terial and PROLA. Authors are also plete: every paper in rians and biographers can track the free to mount their Physical Review New Face every journal that APS expansion of the knowledge of papers on their own sites. has published since physics that took place over the PROLA is composed of scanned 1893 (excepting the previous century in Physical Review. images of the printed journals, op- present and past three Research published in Physical Re- tical character recognition (OCR) years, which are held view by any particular author or material, and a searchable separately for current group or institution can be col- richly-tagged XML bibliographic subscribers) mounted lected and perused with a search database. Each year, another year online in a friendly, of PROLA and a second search of of this material is added to PROLA Bob Kelly/APS powerful, fully search- PROLA team at APS Editorial Office in Ridge, NY: Louise current content. Journalists can ac- from the current subscription con- able system. The project Bogan; Paul Dlug; Mark Doyle, Project Manager; Maxim cess physics Nobel Prize winning tent; 1997 was added in January took just under ten Gregoriev; Gerard Young; Rosemary Clark.
    [Show full text]
  • For Mechanics of Materials Subject (Mms)
    Emirates Journal for Engineering Research, 13 (2), 73-78 (2008) (Regular Paper) ANALOGY BASED LEARNING (ABL) FOR MECHANICS OF MATERIALS SUBJECT (MMS) M. Isreb School of Applied Sciences and Engineering, Monash University Gippsland Campus Northways Road, Churchill, Victoria 3842, Australia Email: [email protected] (Received May 2008 and accepted August 2008) ﻻ يوجد دليل في المراجع واﻷبحاث المنشورة على استخدام التعليم بواسطة النمذجة للعنصر الرياضي في مادة الھندسة الميكانيكية للمواد المتشكلة (والمعروفة أيضاً في أوساط معملي الھندسة باسم ميكانيكا المواد (MMS)). ويھدف تطبيق التعليم بواسطة النمذجة المقدم في ھذه الورقة إلى محاولة تسھيل استيعاب الطﻻب لتلك المادة الصعبة. وقد تم استخدام الطريقة القياسية لنمذجة العزوم باسلوب مبتكر. وقد اختبر الباحث ھذه الطريقة لمدة عشرين عاماً في جامعة موناش باستراليا. وأثبتت الطريقة نجاحھا بغض النظر عن طريقة الطﻻب وقدرتھم على التحصيل طبقاً ﻻمكانياتھم العقلية. وتميزت الطريقة بقابلية التطوير والمرونة. There is no evidence in the literature of using Analogy based-learning (ABL) education for the mathematics components of Engineering Mechanics of Deformable Bodies subject (also known widely amongst engineering educators by the name Mechanics of Materials subject, abbreviated as MMS). The motive of using the ABL for MMS in the present paper is to attempt to make, such already difficult subject, easy one to get across to students. The method used in the paper is based on standard ABL methodology of coupling, in an innovative way, each ABL source with an ABL target of the MMS. The author has tested the new approach for two decades at Monash University, Australia. The approach has proved to bring the students potentials to its fullest regardless of their style of learning, within the eight brain sectors.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • INTENTIONALITY Past and Future VIBS
    INTENTIONALITY Past and Future VIBS Volume 173 Robert Ginsberg Founding Editor Peter A. Redpath Executive Editor Associate Editors G. John M. Abbarno Matti Häyry Mary-Rose Barral Steven V. Hicks Gerhold K. Becker Richard T. Hull Raymond Angelo Belliotti Mark Letteri Kenneth A. Bryson Vincent L. Luizzi C. Stephen Byrum Alan Milchman H. G. Callaway George David Miller Robert A. Delfino Alan Rosenberg Rem B. Edwards Arleen L. F. Salles Andrew Fitz-Gibbon John R. Shook Francesc Forn i Argimon Eddy Souffrant William Gay Tuija Takala Dane R. Gordon Anne Waters J. Everet Green John R. Welch Heta Aleksandra Gylling Thomas F. Woods a volume in Cognitive Science CS Francesc Forn i Argimon, Editor INTENTIONALITY Past and Future Edited by Gábor Forrai and George Kampis Amsterdam - New York, NY 2005 Cover Design: Studio Pollmann The paper on which this book is printed meets the requirements of “ISO 9706:1994, Information and documentation - Paper for documents - Requirements for permanence”. ISBN: 90-420-1817-8 ©Editions Rodopi B.V., Amsterdam - New York, NY 2005 Printed in the Netherlands CONTENTS Preface vii List of Abbreviations ix ONE The Necessity and Nature of Mental Content 1 LAIRD ADDIS TWO Reading Brentano on the Intentionality of the Mental 15 PHILIP J. BARTOK THREE Emotions, Moods, and Intentionality 25 WILLIAM FISH FOUR Lockean Ideas as Intentional Contents 37 GÁBOR FORRAI FIVE Normativity and Mental Content 51 JUSSI HAUKIOJA SIX The Ontological and Intentional Status of Fregean Senses: An Early Account of External Content 63 GREG JESSON
    [Show full text]
  • November 2019
    A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September.
    [Show full text]
  • Homogenization of Processes in Nonlinear Visco-Elastic Composites
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. X (2011), 611-644 Homogenization of processes in nonlinear visco-elastic composites AUGUSTO VISINTIN Abstract. The constitutive behaviour of a multiaxial visco-elastic material is here represented by the nonlinear relation t ε A(x) σ(x, τ) dτ α(σ, x), − : ∈ !0 which generalizes the classical Maxwell model of visco-elasticity of fluid type. Here α( , x) is a (possibly multivalued) maximal monotone mapping, σ is the stress te·nsor, ε is the linearized strain tensor, and A(x) is a positive-definite fourth-order tensor. The above inclusion is here coupled with the quasi-static σ force-balance law, div f#. Existence and uniqueness of the weak solution are proved for a bou−ndary-v=alue problem. Convergence to a two-scale problem is then derived for a composite ma- terial, in which the functions α and A periodically oscillate in space on a short length-scale. It is proved that the coarse-scale averages of stress and strain solve a single-scale homogenized problem, and that conversely any solution of this prob- lem can be represented in that way. The homogenized constitutive relation is represented by the minimization of a time-integrated functional, and is rather dif- ferent from the above constitutive law. These results are also retrieved via De Giorgi’s notion of %-convergence. These conclusions are at variance with the outcome of so-called analogical models, that rest on an (apparently unjustified) mean-field-type hypothesis. Mathematics Subject Classification (2010): 35B27 (primary); 49J40, 73E50, 74Q (secondary).
    [Show full text]
  • Characterizing Ecohydrological and Biogeochemical Connectivity Across Multiple Scales: a New Conceptual Framework
    ECOHYDROLOGY Ecohydrol. (2010) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.187 Characterizing ecohydrological and biogeochemical connectivity across multiple scales: a new conceptual framework Lixin Wang,1*ChrisZou,2 Frances O’Donnell,1 Stephen Good,1 Trenton Franz,1 Gretchen R. Miller,3 Kelly K. Caylor,1 Jessica M. Cable4 and Barbara Bond5 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA 2 Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA 3 Department of Civil Engineering, Texas A&M University, College Station, TX, USA 4 International Arctic Research Center, University of Alaska, Fairbanks, AK, USA 5 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA ABSTRACT The connectivity of ecohydrological and biogeochemical processes across time and space is a critical determinant of ecosystem structure and function. However, characterizing cross-scale connectivity is a challenge due to the lack of theories and modelling approaches that are applicable at multiple scales and due to our rudimentary understanding of the magnitude and dynamics of such connectivity. In this article, we present a conceptual framework for upscaling quantitative models of ecohydrological and biogeochemical processes using electrical circuit analogies and the Thevenin’s´ theorem. Any process with a feasible linear electrical circuit analogy can be represented in larger scale models as a simplified Thevenin´ equivalent. The Thevenin´ equivalent behaves identically to the original circuit, so the mechanistic features of the model are maintained at larger scales. We present three case applications: water transport, carbon transport, and nitrogen transport.
    [Show full text]
  • A Break-Down Model for Cost Estimation of Composites a Thesis
    A Break-Down Model for Cost Estimation of Composites A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Aniruddha V. Joshi August 2018 © 2018 Aniruddha V. Joshi. All Rights Reserved. 2 This thesis titled A Break-Down Model for Cost Estimation of Composites by ANIRUDDHA V. JOSHI has been approved for the Department of Industrial and Systems Engineering and the Russ College of Engineering and Technology by Dale Masel Associate Professor of Industrial and Systems Engineering Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT JOSHI, ANIRUDDHA V., M.S., August 2018, Industrial and Systems Engineering A Break-Down Model for Cost Estimation of Composites Director of Thesis: Dale Masel With the development of cheaper composite materials and more efficient manufacturing processes, there has been a steady growth in the applications as well as the interest of small and medium scale enterprises to manufacture composite parts. Current methods for cost estimation of composites require many inputs and CAD models. The methodology developed in this thesis will enable manufacturers and designers to obtain a preliminary cost estimate for composite parts based on minimum information during the early design stages. The total cost estimate calculated in this thesis follows the break-down approach where the total cost is broken down into its primary and secondary cost components. The break-down model follows a hierarchical structure of calculating the usage of materials and time, which are at a lower level, based on the user inputs and then using these lower level costs to calculate the upper level cost estimates.
    [Show full text]
  • Resources for Research on Analogy: a Multi- Disciplinary Guide Marcello Guarini University of Windsor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship at UWindsor University of Windsor Scholarship at UWindsor Philosophy Publications Department of Philosophy 2009 Resources for Research on Analogy: A Multi- disciplinary Guide Marcello Guarini University of Windsor Amy Butchart Paul Smith Andrei Moldovan Follow this and additional works at: http://scholar.uwindsor.ca/philosophypub Part of the Philosophy Commons Recommended Citation Guarini, Marcello; Butchart, Amy; Smith, Paul; and Moldovan, Andrei. (2009). Resources for Research on Analogy: A Multi- disciplinary Guide. Informal Logic, 29 (2), 84-197. http://scholar.uwindsor.ca/philosophypub/18 This Article is brought to you for free and open access by the Department of Philosophy at Scholarship at UWindsor. It has been accepted for inclusion in Philosophy Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Resources for Research on Analogy: A Multi-disciplinary Guide MARCELLO GUARINI* Department of Philosophy University of Windsor Windsor, ON Canada [email protected] AMY BUTCHART Department of Philosophy Guelph University Gulph, ON Canada [email protected] PAUL SIMARD SMITH Department of Philosophy University of Waterloo Waterloo, ON Canada [email protected] ANDREI MOLDOVAN Faculty of Philosophy Department of Logic, History and Philosophy of Science University of Barcelona Barcelona, Spain [email protected] * The first author wishes to thank the Social Sciences and Humanities Research Council of Canada for financial support over the four years during which this project was completed. ©Marcello Guarini, Amy Butchart, Paul Simard Smith, Andrei Moldovan. Informal Logic, Vol. 29, No.2, pp.
    [Show full text]
  • Philosophy of Time: a Slightly Opinionated Introduction
    Philosophy of time: A slightly opinionated introduction Florian Fischer There are several intertwined debates in the area of contemporary philos- ophy of time. One field of inquiry is the nature of time itself. Presentists think that only the present moment exists whereas eternalists believe that all of (space-)time exists on a par. The second main field of inquiry is the question of how objects persist through time. The endurantist claims that objects are three-dimensional wholes, which persist by being wholly1 present, whereas the perdurantist thinks that objects are four- dimensional and that their temporal parts are the bearers of properties. The third debate in the field of contemporary philosophy of time is about tense- versus tenseless theory. Tensers are at odds with detensers about the status of the linguistic reference to the present moment. These are only very crude characterizations and it is even disputed by some ad- vocates of the corresponding positions that they are accurate. However this very sketchy picture already reveals a fundamental difference: The eternalism/presentism and endurance/perdurance discussions belong to the field of metaphysics, whereas tense is in the first instance a linguistic phenomenon. Among the many fields of philosophy, there are two that are more intimately interconnected than most but whose practi- tioners have too long pursued relatively independent paths. On the one hand, there are philosophers of language, who have devoted much attention to indexicals (`now', etc.), tem- poral operators (`it has been the case that', etc.), and tensed sentences. On the other hand, there are the philosophers of tensed and tenseless time (also called A-time or B-time, dynamic time or static time, etc.).
    [Show full text]
  • The Effectiveness of Model-Based Instruction on Student Achievement and Student Metacognition in Advanced Chemistry Classes" (2017)
    Kennesaw State University DigitalCommons@Kennesaw State University Doctor of Education in Secondary Education Department of Secondary and Middle Grades Dissertations Education Fall 10-25-2017 The ffecE tiveness of Model-Based Instruction on Student Achievement and Student Metacognition in Advanced Chemistry Classes Amanda Edwards Follow this and additional works at: http://digitalcommons.kennesaw.edu/seceddoc_etd Part of the Science and Mathematics Education Commons Recommended Citation Edwards, Amanda, "The Effectiveness of Model-Based Instruction on Student Achievement and Student Metacognition in Advanced Chemistry Classes" (2017). Doctor of Education in Secondary Education Dissertations. 11. http://digitalcommons.kennesaw.edu/seceddoc_etd/11 This Dissertation is brought to you for free and open access by the Department of Secondary and Middle Grades Education at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Doctor of Education in Secondary Education Dissertations by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. The Effectiveness of Model-Based Instruction on Student Achievement and Student Metacognition in Advanced Chemistry Classes by Amanda D. Edwards Doctoral Candidate A Dissertation Presented to the Faculty of the Graduate School October 25, 2017 Dr. Michelle Head, chairperson Dr. Kimberly Cortes Dr. Nita Paris Kennesaw State University i ACKNOWLEDGEMENTS This journey to completing this degree would not have been possible without my dissertation committee. My sincerest thanks are given to my dissertation chair, Dr. Michelle Head for her ability to always find the positive and to guide me, encourage me, and drag me (when necessary) toward all that was needed to finish this work. I would like to express my appreciation to Dr.
    [Show full text]