Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer Running Title

Total Page:16

File Type:pdf, Size:1020Kb

Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer Running Title Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Uvyr)Thvp ru v rpr hv h r hpvhrq vu rhhv v vh py rphy phpr Svt vyr) 6u ) " #$ % & '$ $( $)*# $ ,$$ - ./ 0 1 " , $'2 / ' - , $$03$, 4, 5$ $ 6 7$ % & 8 8$ 9 6ssvyvhv) . 8 : .2 $ 5 1 $ ; $ ;# < %. 8 : ., , $ ;# $ < -: . $, 8 $ . . 8 ; $ ;# /. 8 : . $; $ ;# < 0= $ 1 2 . , >2,, $ ?&, $ 2 . & $ , $@ ABA%B, $ < 4: . $ $ $ ; $ ;# < 6: .2 $ 5 1 $ .@ $ $ $ = $ ; $ ;# < Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. & 8 * $$ < 9& $8 C 8 < 8$ D< < 8syvp s vr rC & . $@ $, $ ', $E $ . $ 8$:7'@ < % Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 6i hpC& 8 . . $ $ >? $ <& . # $# . $ $ .464A6 22)2 . $. E<& # $ >?. $ . ). $ . ) . $$ 222 2 < $ $ . @ . <& 8$. $ ., ::)$$@,. ) $ ),@$$<F .8 222 . , $) ,::)$$ ), $E <& 8# # $8 , < - Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. D qpv #$ .$$) $ .. 8 >&5?>?<& . 8@ #$ $#$ # $ 8$ .8 . # <<. 8 $ # >%?< 3 #$ 8 .* 8 . $ >-?< . .#$ . $ $ # # . $$ . .. $ >/?< ##$ # $ .. 8 . $8. $ . . $$ $ .<: # . #$ . $$ 8 . #) $$ # $$ ## $. < '$ # $. . #8 . $ # 8 . <( @ $$ .-4 $8 >0?>4? FBXW7 >6B?<2. ) $ #$ 8 8$ $ . $ .* >G?<( # . # 8 #$ 8 $#$ $ * $ . #$ <= $ / Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. $. ) .$.* $ # $ . # #$ . < 0 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hhr vhy hq Hruq Study design.F $$ %A)%0 . 22 222 $$ %0 2 >4A?<(. E $8$ $. % >%%/ &H7 $? $$ >& 8$?< * $8 . :7'@ . $$ > $ 8$ ? * 2$$ 3*$ . $ . <'$$ $ . &H7 $ I%0A). $ 8 . IGAJ . * . I/AJ< Patient samples. :7' @ . G4. E $>-@A3 ? $* $ >& # 0A'3 ?>?<:7'. %B:&' $8$ $ @ L2' :7',$ >L ?<:7' * . L 8 3:7' >2# 8.& $ ?<( # $ . $ . BMPR2 :7'. G2((1 @ L2' :7'((1& >L ?< Tumour tissue purity, determination of genomic stability and T/N matching. '.. @714<A . $ 1/AJ& $$ $ $$< $$ 8$ 2 ' $ # <%>1 F2? 4 :7' $ . .# $ , >,'&%0,'&%47)%7)%/ =7=)%6? 4 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. --A@$ $>'$, ( '?<&H7 . 5'8 8>%?< Target enrichment by HaloPlex and Illumina sequencing. 5 :7' >%%0?. $ 8$ 3 $ 1$@ >'$ ?. . .464<&* $ $ . * $8 , $E 3 # :7' >'$ ?<& 8 * @ * 3*$ . >2$$ ?<&. # . . * 8 GAJ I4AA. $< $ . * * . 8 < $ @I4AA). $ . . %0A. $>- &H7 ?< Statistical analyses. 2$$ * #8 ' # A<G<0>-? 8* $ $ . >G %AAG 8$? '$# %<<-- $$ . @ .0J <' . . $* .2 >'$ et al ? . <F . $ 27 2 8 . >/? 8 . ) 8 ) >7C?<F . $$ ) ... 27 CL)# $ .NA<. I 8 I%C7C <:.. # 6 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 8 . # $8 ) F$R ) (R@ <&, . . $ $ < In situ mutation analysis with padlock probes.(. E/3 . $ . 1$ $>& ( .?<: $ $ # $ 8$ $ .0 % 8 > % $$ %?< 1 8.. $ . $ * > $ & 8$?<1 8. . &/6: ;%0$$$ 7'@ $#$> $ & 8$ %?<& . $5 8et al>0?<,.$ $$.@-<6J1('. /0 %A #$<7@ 7' # 8 .7' > $ & 8$-? $.$ . ). <$) :7' 3$ # $ 88E $ . $$ 8 $$$ $. < $$$ >1? . .$ ) $ 8$$ $ > $ & 8$/? $ :'12<& $$ P'@ $ 22.$ >P=8 5 ? P) .A</G3 &4 $ #$ . AJ<2 $$ $ P7 . >P=8 5 ?<& $ . $ .$ R . 1 $)$ 8$$> $ . ? B Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. E. $ # $< #. 1 $$.$ * $ $ $$ $>4?<'* $ . A<0 A<B .$ <2 $ $$ .$#<%<< $$2 "$ >, 2 ';'? . $ $$ $ 8 >#<B<0< ?<'$$ . 3 @$S > ? $ :'12> $? . .$ < Cell lines and cell culture. 1 $::)>)%%?$$ . '&;' %AA<'$$ ::)$$$ 8 >&? .$. '&$$$ #= 8%A4<::)$$ $$@13,)5(1 / # 8$ # $ <::)$$ $$@5(1(113,%)5(1 ,)(1 . >6?<'$$$$$ :>2# ? $ AJ. $8 # J$$) >2# ? -6:0J=%< Generation of stable ectopic expressing cell lines of wild type and mutant EPHB1. # $ $ . 8 <& 8. 0AAAA$$$ $$ . %/$$$ < $ %0Aμ$ . $ 6<0 H $* ),$$<&$ # %0Aμ$ .$ # $$<'. %/ . 8 -6°# $ . <'. /B . 8 $$$ 1 G Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. >μH $?. %)/ # 1 $$ $$ $<@ $#$ .13, . .. 8*1< In vitro compartmentalisation experiments. $ @ . 8 (17). ,.$::)$$@5(1 (1 @ C- $ .-AAAA$$H % #$ % H % $ 8 -6:0J=%< $ #%/<'. /B #$.@/J . $ ($ 5 :'12> , ?<&@ . < Confocal image analysis and quantitation of GFP clusters by ImageJ software<$. $ @ 8 . $>6AA? $< 2 * . .# .$ %A& 8 # . $$ E) @. @ <$$ * .8 8 .$$ 5(1) #$ . @ $ #.$ .. . $ $ E) @ . @ $ 8 2 " <2 8 $$ < A Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Sry Samples and mutation frequency & $ . % @8 22222 2 . @ $ $.>0B ? . $$ ) $>& 8$?<(# H $>&H7? @$ . $ $ . $* $8 <& $ .464> $ & 8$0? $> $ & 8$4? 3 $ 1$@>'$ ? * <5 ) 8 $ 8 . $ F ) '112-0- &5(! $$ . $ # $<& . A4-). $> %04)-04? $ A-). $> %0BM/G04? $ $<' # # $ $ $ > .2 $ ? $ $$ 8 #81-A 8 ) $ $<F .--G% .4G4 $ $ # >7?G/ ) 766 H$ $ >2:$? -B$ . > $ & 8$6?<& $$ 8$>27? # .G<G ) >72:$ $ ? $$ 8$>2? 60</ 464 . >(< $ & 8$6?<F ) 8 27 2 . @ <227 APC TP53KRASSMAD4 PIK3CA BRAF<2 ) Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 ACVR2ASETD1BTGFBR2BMPR2BRAF TCF7L2>(<8 ?< & . 2:$SETD1B BMPR2# $ 8 * > $ $ ?<; .G 22) * .BMPR2 8 * . -J>4HG? . <; $ . ,1 # %G-&$$$ #@ $ ,1% 8# $ . # #@ . .,1% $ .. . > $ $ (<?< Enrichment of Eph receptor mutations in metastatic tumours & . # . $ $ $ .27 <& # 8 . $ ..8 ) 27 >A#<G</WA<6 F$R ) $ ) ?<F . .. # $ 8 ) $ . $ . $ $ > $ & 8$B?<& .8 $ $ $ ) 0A 8 . ) 8 <5. $ $ :'2:. $ $>B?# $ . . $> $ $ & 8$G?<& # $ . 27 >BH0% . 2 22 222 $ #$ ?# % Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 20, 2017; DOI: 10.1158/0008-5472.CAN-16-1921 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. #$ >%H- ? . $.. >WA<AA-%(R@ ? > $ & 8$A?<& ..* . 8 ) > $ & 8$? %H%/ $# $ 8 * > $ & 8$A?< & $ 8# $ # $$$ >'?A<)A<- $ . . * <@ )# >4H%/? . $ . $ 4 <@ $ ' .A<MA<0 8. 0A)60J $$ >&?< $ .. 222 2 >%%H%/ ?<& .
Recommended publications
  • Characterization of Protein Kinase C Alpha Deficiency in a Mouse Model
    Aus der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie der Charité – Universitätsmedizin Berlin Eingereicht über das Institut für Veterinär-Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Characterization of Protein Kinase C Alpha Deficiency in a Mouse Model Inaugural-Dissertation zur Erlangung des Doctor of Philosophy (Ph.D.) an der Freien Universität Berlin vorgelegt von Elena Ariane Noe Tierärztin aus Düsseldorf Berlin 2016 Journal-Nr.: 3878 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Prof. Dr. Dr. Petra Reinhold Zweiter Gutachter: Univ.-Prof. Dr. Martin Witzenrath Dritter Gutachter: Univ.-Prof. Dr. Christa Thöne-Reineke Deskriptoren (nach CAB-Thesaurus): Mice; animal models; protein kinase C (MeSH); pulmonary artery; hypertension; blood pressure, vasoconstriction; esophageal sphincter, lower (MeSH); respiratory system; smooth muscle; esophageal achalasia (MeSH) Tag der Promotion: 14.07.2016 Contents Contents ................................................................................................................................... V List of Abbreviations ............................................................................................................... VII 1 Introduction ................................................................................................................. 1 1.1 Protein Kinase C (PKC) and its Role in Smooth Muscle Contraction ........................
    [Show full text]
  • BMPR2 Mutations in Pulmonary Arterial Hypertension with Congenital Heart Disease
    Copyright #ERS Journals Ltd 2004 Eur Respir J 2004; 24: 371–374 European Respiratory Journal DOI: 10.1183/09031936.04.00018604 ISSN 0903-1936 Printed in UK – all rights reserved BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease K.E. Roberts*, J.J. McElroy#, W.P.K. Wong*, E. Yen*, A. Widlitz}, R.J. Barst}, J.A. Knowles#,z,§, J.H. Morse* # } BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Depts ofz *Medicine, Psychiatry, Pediatrics, K.E. Roberts, J.J. McElroy, W.P.K. Wong, E. Yen, A. Widlitz, R.J. Barst, J.A. Knowles, and the Columbia Genome Center, Columbia University College of Physicians and Surgeons, J.H. Morse. #ERS Journals Ltd 2004. § ABSTRACT: The aim of the present study was to determine if patients with both and the New York State Psychiatric Institute, New York, NY, USA. pulmonary arterial hypertension (PAH), due to pulmonary vascular obstructive disease, and congenital heart defects (CHD), have mutations in the gene encoding bone Correspondence: J.H. Morse, Dept of Medi- morphogenetic protein receptor (BMPR)-2. cine, Columbia University College of Physi- The BMPR2 gene was screened in two cohorts: 40 adults and 66 children with PAH/ cians and Surgeons, New York, NY, USA. CHD. CHDs were patent ductus arteriosus, atrial and ventricular septal defects, partial Fax: 1 2123054943 anomalous pulmonary venous return, transposition of the great arteries, atrioventicular E-mail: [email protected] canal, and rare lesions with systemic-to-pulmonary shunts. Six novel missense BMPR2 mutations were found in three out of four adults with Keywords: Bone morphogenetic protein receptor 2 mutations complete type C atrioventricular canals and in three children.
    [Show full text]
  • The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient
    cells Article The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient 1, 2, 1 Chris Happé y, Kondababu Kurakula y, Xiao-Qing Sun , Denielli da Silva Goncalves Bos 1 , Nina Rol 1, Christophe Guignabert 3,4 , Ly Tu 3,4 , Ingrid Schalij 1, Karien C. Wiesmeijer 2, Olga Tura-Ceide 5,6,7, Anton Vonk Noordegraaf 1, Frances S. de Man 1, Harm Jan Bogaard 1 and Marie-José Goumans 2,* 1 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands; [email protected] (C.H.); [email protected] (X.-Q.S.); [email protected] (D.d.S.G.B.); [email protected] (N.R.); [email protected] (I.S.); [email protected] (A.V.N.); [email protected] (F.S.d.M.); [email protected] (H.J.B.) 2 Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; [email protected] (K.K.); [email protected] (K.C.W.) 3 INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; [email protected] (C.G.); [email protected] (L.T.) 4 Université Paris-Saclay, School of Medicine, 94270 Le Kremlin-Bicêtre, France 5 Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; [email protected] 6 Biomedical Research Networking center on Respiratory diseases (CIBERES), 28029 Madrid, Spain 7 Department of Pulmonary Medicine, Dr.
    [Show full text]
  • The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome
    Asadi S and Aranian MR, J Hematol Hemother 5: 008 Journal of Hematology & Hemotherapy Review Article The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome Asadi S* and Aranian MR Division of Medical Genetics and Molecular Pathology Research, Harvard University, Boston Children’s Hospital, Iran Abstract *Corresponding author: Shahin Asadi, Division of Medical Genetics and Molecular Pathology Research, Harvard University, Boston Children’s Hospital, Iran, Tel: +98 Fibrodysplasia Ossificans Progressiva (FOP) is a severely dis- 9379923364; E-mail: [email protected] abling heritable disorder of connective tissue characterized by con- genital malformations of the great toes and progressive heterotopic Received Date: February 7, 2020 ossification that forms qualitatively normal bone in characteristic ex- Accepted Date: February 17, 2020 traskeletal sites. Classic FOP is caused by a recurrent activating mu- tation (617G>A; R206H) in the gene ACVR1 (ALK2) encoding Activin Published Date: February 24, 2020 A receptor type I/Activin-like kinase 2, a bone morphogenetic protein (BMP) type I receptor. Atypical FOP patients also have heterozygous Citation: Asadi S, Aranian MR (2020) The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome. J Hematol ACVR1 missense mutations in conserved amino acids. Hemother 5: 008. Keywords: ACVR1; BMPR1A; BMPR1B; BMPR2; BMP4; Genetics Copyright: © 2020 Asadi S, et al. This is an open-access article distributed under the mutations, Stone man syndrome terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source Overview of Stone Man Syndrome are credited.
    [Show full text]
  • A Novel Regulatory Mechanism of the BMP Signaling Pathway
    A novel regulatory mechanism of the BMP signaling pathway Jose Maria Amich Manero under the direction of Prof. Vicki Rosen Dr. Jonathan Lowery Harvard School of Dental Medicine Research Science Institute July 30, 2013 Abstract The BMP signaling pathway is a pivotal morphogenetic signal involved in a wide spectrum of cellular processes. The fact that the number of ligands far exceeds the number of receptors, and how a limited canonical pathway can accomplish pleiotropic effects demonstrate that the regulation of this pathway is, at present, poorly understood. In this study, we propose N-linked glycosylation as a specific regulatory mechanism of the BMP type 2 receptors (ACVR2A, ACVR2B and BMPR2). Computational screening for glycosylated asparagine residues in BMPR2 reveals three putative sites, which we show to be glycosylated by means of site-directed mutagenesis. Furthermore, we demonstrate that BMPR2 glycosylation is essential for ligand binding but that glycosylation of ACVR2A prevents binding. Collectively, our findings provide the first mechanistic insight into the regulation of the BMP signaling pathway through glycosylation of BMP type 2 receptors. Summary Numerous organismic processes such as embryonic development and bone growth are controlled by a cell regulatory mechanism known as the bone morphogenetic protein (BMP) pathway. This pathway is activated when a signaling protein binds to the membrane receptor, transmitting in turn an order to the nucleus. In an attempt to shed light on BMP pathway activation, we focused on receptor-bound sugar chains in view of their protein-specific signa- ture. To study the role of individual sugar chains, we systematically blocked their function until we were able to pinpoint three key sites.
    [Show full text]
  • Activation of Transmembrane Cell-Surface Receptors Via a Common Mechanism? the ‘‘Rotation Model’’
    Insights & Perspectives Hypotheses Activation of transmembrane cell-surface receptors via a common mechanism? The ‘‘rotation model’’ Ichiro N. Maruyama It has long been thought that transmembrane cell-surface receptors, such as typically consist of an extracellular receptor tyrosine kinases and cytokine receptors, among others, are activated by domain (ECD) and an intracellular ligand binding through ligand-induced dimerization of the receptors. However, domain (ICD) separated by a single transmembrane domain (TMD), with there is growing evidence that prior to ligand binding, various transmembrane the exception of bacterial receptors receptors have a preformed, yet inactive, dimeric structure on the cell surface. such as the aspartate receptor (Tar) Various studies also demonstrate that during transmembrane signaling, ligand and the serine receptor (Tsr), which binding to the extracellular domain of receptor dimers induces a rotation of have another TMD at their amino transmembrane domains, followed by rearrangement and/or activation of termini. Ligand binding to their ECDs often regulates kinases that are either intracellular domains. The paper here describes transmembrane cell-surface integrated into the receptor ICD, or receptors that are known or proposed to exist in dimeric form prior toligand binding, physically associated with the ICD. and discusses how these preformed dimers are activated by ligand binding. Apart from receptors that initiate signaling pathways inside cells via Keywords: tyrosine phosphorylation, there are .cytokine; dimerization; ligand binding; preformed dimer; transmembrane receptors in bacteria, fungi, and plants signaling; tyrosine kinase that phosphorylate histidine residues upon ligand binding. Furthermore, natriuretic peptide receptors, which are receptor-type guanylyl cyclases, Introduction cell membranes to the cytoplasm, and produce cGMP upon peptide binding.
    [Show full text]
  • BMPR1A Is Necessary for Chondrogenesis and Osteogenesis
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs246934. doi:10.1242/jcs.246934 RESEARCH ARTICLE BMPR1A is necessary for chondrogenesis and osteogenesis, whereas BMPR1B prevents hypertrophic differentiation Tanja Mang1,2, Kerstin Kleinschmidt-Doerr1, Frank Ploeger3, Andreas Schoenemann4, Sven Lindemann1 and Anne Gigout1,* ABSTRACT essential for osteogenesis and bone formation during this process BMP2 stimulates bone formation and signals preferably through BMP (Bandyopadhyay et al., 2006; McBride et al., 2014; Yang et al., 2013). – receptor (BMPR) 1A, whereas GDF5 is a cartilage inducer and signals Similarly, during bone fracture healing where a similar mechanism – preferably through BMPR1B. Consequently, BMPR1A and BMPR1B are takes place conditional deletion of Bmp2 in mesenchymal believed to be involved in bone and cartilage formation, respectively. progenitors or osteoprogenitors prevents fracture healing (Mi et al., However, their function is not yet fully clarified. In this study, GDF5 2013; Tsuji et al., 2006). In vitro, BMP2 provokes an induction of mutants with a decreased affinity for BMPR1A were generated. These alkaline phosphatase (ALP) activity, osteocalcin expression and matrix mutants, and wild-type GDF5 and BMP2, were tested for their ability to mineralization in pluripotent mesenchymal progenitor cells (Cheng induce dimerization of BMPR1A or BMPR1B with BMPR2, and for their et al., 2003), and also stimulates chondrogenesis or adipogenesis (Date chondrogenic, hypertrophic and osteogenic properties in chondrocytes, et al., 2004). Finally, BMP2 has been shown to promote bone repair in in the multipotent mesenchymal precursor cell line C3H10T1/2 and the animal models (Kleinschmidt et al., 2013; Wulsten et al., 2011) and in human osteosarcoma cell line Saos-2.
    [Show full text]
  • Inhibition of ERK 1/2 Kinases Prevents Tendon Matrix Breakdown Ulrich Blache1,2,3, Stefania L
    www.nature.com/scientificreports OPEN Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown Ulrich Blache1,2,3, Stefania L. Wunderli1,2,3, Amro A. Hussien1,2, Tino Stauber1,2, Gabriel Flückiger1,2, Maja Bollhalder1,2, Barbara Niederöst1,2, Sandro F. Fucentese1 & Jess G. Snedeker1,2* Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fbrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants. Tendon is a musculoskeletal tissue that transmits muscle force to bone. To accomplish its biomechanical function, tendon tissues adopt a specialized extracellular matrix (ECM) structure1. Te load-bearing tendon compart- ment consists of highly aligned collagen-rich fascicles that are interspersed with tendon stromal cells. Tendon is a mechanosensitive tissue whereby physiological mechanical loading is vital for maintaining tendon archi- tecture and homeostasis2. Mechanical unloading of the tissue, for instance following tendon rupture or more localized micro trauma, leads to proteolytic breakdown of the tissue with severe deterioration of both structural and mechanical properties3–5.
    [Show full text]
  • Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva
    biomedicines Review Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva Fatima Khan 1, Xiaobing Yu 2 and Edward C. Hsiao 3,* 1 Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT 06518, USA; [email protected] 2 Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA; [email protected] 3 Department of Medicine, Division of Endocrinology and Metabolism, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA * Correspondence: [email protected]; Tel.: +1-(415)-476-9732 Abstract: Fibrodysplasia Ossificans Progressiva (FOP) is an ultra-rare but debilitating disorder char- acterized by spontaneous, progressive, and irreversible heterotopic ossifications (HO) at extraskeletal sites. FOP is caused by gain-of-function mutations in the Activin receptor Ia/Activin-like kinase 2 gene (Acvr1/Alk2), with increased receptor sensitivity to bone morphogenetic proteins (BMPs) and a neoceptor response to Activin A. There is extensive literature on the skeletal phenotypes in FOP, but a much more limited understanding of non-skeletal manifestations of this disease. Emerging evidence reveals important cardiopulmonary and neurologic dysfunctions in FOP including thoracic insufficiency syndrome, pulmonary hypertension, conduction abnormalities, neuropathic pain, and demyelination of the central nervous system (CNS). Here, we review the recent research and discuss unanswered questions regarding the cardiopulmonary and neurologic phenotypes in FOP. Keywords: Fibrodysplasia Ossificans Progressiva (FOP); cardiac conduction abnormalities; ACVR1; Citation: Khan, F.; Yu, X.; Hsiao, E.C. Cardiopulmonary and Neurologic neuropathic pain; cardiac dysfunction; neurological dysfunction Dysfunctions in Fibrodysplasia Ossificans Progressiva.
    [Show full text]
  • BMPR2 Germline Mutations in Pulmonary Hypertension Associated with Fenfluramine Derivatives
    Copyright #ERS Journals Ltd 2002 Eur Respir J 2002; 20: 518–523 European Respiratory Journal DOI: 10.1183/09031936.02.01762002 ISSN 0903-1936 Printed in UK – all rights reserved BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives M. Humbert*, Z. Deng#,ƒ, G. Simonneau*, R.J. Barst},§, O. Sitbon*, M. Wolfz, N. Cuervo#, K.J. Moore#, S.E. Hodge#,ƒ,**, J.A. Knowles#,ƒ, J.H. Morse} z BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine *Service de Pneumologie, and He´mato- derivatives. M. Humbert, Z. Deng, G. Simonneau, R.J. Barst, O. Sitbon, M. Wolf, logie, Hoˆpital Antoine Be´cle`re, Clamart, # France, and the Depts of }Medicine, N. Cuervo, K.J. Moore, S.E. Hodge, J.A. Knowles, J.H. Morse. ERS Journals Ltd § # 2002. Pediatrics, and Psychiatry, Columbia University College of Physicians and ABSTRACT: This study investigated whether patients developing pulmonary arterial Surgeons, ƒNew York State Psychiatric hypertension (PAH) after exposure to the appetite suppressants fenfluramine and Institute, and **Division of Biostatis- dexfenfluramine have mutations in the bone morphogenetic protein receptor 2 tics, Columbia University School of (BMPR2) gene, as reported in primary pulmonary hypertension. Public Health, New York, NY, USA. BMPR2 was examined for mutations in 33 unrelated patients with sporadic PAH, and in two sisters with PAH, all of whom had taken fenfluramine derivatives, as well as Correspondence: J.H. Morse, Dept in 130 normal controls. The PAH patients also underwent cardiac catheterisation and of Medicine, Columbia Presbyterian body mass determinations. Medical Center, PH 8 East, Suite 101, 630 West 168th Street, New York, Three BMPR2 mutations predicting changes in the primary structure of the BMPR- NY 10032.
    [Show full text]
  • Eph Receptor Signalling: from Catalytic to Non-Catalytic Functions
    Oncogene (2019) 38:6567–6584 https://doi.org/10.1038/s41388-019-0931-2 REVIEW ARTICLE Eph receptor signalling: from catalytic to non-catalytic functions 1,2 1,2 3 1,2 1,2 Lung-Yu Liang ● Onisha Patel ● Peter W. Janes ● James M. Murphy ● Isabelle S. Lucet Received: 20 March 2019 / Revised: 23 July 2019 / Accepted: 24 July 2019 / Published online: 12 August 2019 © The Author(s) 2019. This article is published with open access Abstract Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that 1234567890();,: 1234567890();,: drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6.
    [Show full text]
  • Systemic Analysis of Tyrosine Kinase Signaling Reveals a Common Adaptive Response Program in a HER2-Positive Breast Cancer
    Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schwill, Martin et al. "Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer." Science Signaling 12, 565 (January 2019): eaau2875 © 2019 The Author(s) As Published https://dx.doi.org/10.1126/scisignal.aau2875 Publisher American Association for the Advancement of Science (AAAS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125489 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Sci Signal Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 July 22. Published in final edited form as: Sci Signal. ; 12(565): . doi:10.1126/scisignal.aau2875. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer Martin Schwill1, Rastislav Tamaskovic1, Aaron S. Gajadhar2, Florian Kast1, Forest M. White2, and Andreas Plückthun1,* 1Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland 2Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Abstract Drug-induced compensatory signaling and subsequent rewiring of the signaling pathways that support cell proliferation and survival promotes the development of acquired drug resistance in tumors. Here, we sought to analyze the adaptive kinase response in cancer cells after distinct treatment with agents targeting human epidermal growth factor receptor 2 (HER2), specifically those which induce only temporary cell cycle arrest or apoptosis in HER2-overexpressing cancers.
    [Show full text]