Reproductive Biology and Endocrinology BioMed Central Review Open Access Chemoresistance in human ovarian cancer: the role of apoptotic regulators Michael Fraser1, Brendan Leung1, Arezu Jahani-Asl1, Xiaojuan Yan1, Winston E Thompson2 and Benjamin K Tsang*1 Address: 1Department of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa Health Research Institute, Ottawa, Canada K1Y 4E9, Canada and 2Department of Obstetrics & Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, GA 30310, USA Email: Michael Fraser -
[email protected]; Brendan Leung -
[email protected]; Arezu Jahani-Asl -
[email protected]; Xiaojuan Yan -
[email protected]; Winston E Thompson -
[email protected]; Benjamin K Tsang* -
[email protected] * Corresponding author Published: 07 October 2003 Received: 26 June 2003 Accepted: 07 October 2003 Reproductive Biology and Endocrinology 2003, 1:66 This article is available from: http://www.RBEj.com/content/1/1/66 © 2003 Fraser et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract Ovarian cancer is among the most lethal of all malignancies in women. While chemotherapy is the preferred treatment modality, chemoresistance severely limits treatment success. Recent evidence suggests that deregulation of key pro- and anti-apoptotic pathways is a key factor in the onset and maintenance of chemoresistance. Furthermore, the discovery of novel interactions between these pathways suggests that chemoresistance may be multi-factorial. Ultimately, the decision of the cancer cell to live or die in response to a chemotherapeutic agent is a consequence of the overall apoptotic capacity of that cell.