Inhibition of Metastasis by HEXIM1 Through Effects on Cell Invasion and Angiogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epha Receptors and Ephrin-A Ligands Are Upregulated by Monocytic
Mukai et al. BMC Cell Biology (2017) 18:28 DOI 10.1186/s12860-017-0144-x RESEARCHARTICLE Open Access EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/ maturation and promote cell adhesion and protrusion formation in HL60 monocytes Midori Mukai, Norihiko Suruga, Noritaka Saeki and Kazushige Ogawa* Abstract Background: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/ spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/ macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. Results: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16− monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and β2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and β1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand- coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes. -
RNA Isolation and Real-Time PCR Analysis
Pleiotrophin deletion alters glucose homeostasis, energy metabolism and brown fat thermogenic function. Sevillano, Julio1#; Sánchez-Alonso, María Gracia1#; Zapatería, Begoña1; Calderón, María1; Alcalá, Martín1, Limones, María1; Pita, Jimena1; Gramage, Esther2; Vicente- Rodríguez, Marta2; Horrillo, Daniel4; Medina-Gómez, Gema4; Obregón, María Jesús5; Viana, Marta1; Valladolid-Acebes, Ismael3, Herradón, Gonzalo2, Ramos, María del Pilar1*. Affiliations 1Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain. 2Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain. 3The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden 4Department of Basic Sciences of Health. Universidad Rey Juan Carlos. Alcorcón. Madrid. Spain. 5Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain. Keywords: Glucose homeostasis; Metabolism; Adipose tissue; Insulin resistance, Thermogenesis. *To whom correspondence should be addressed: Mª del Pilar Ramos Álvarez, PhD. Department of Chemistry and Biochemistry Facultad de Farmacia, Universidad CEU San Pablo Ctra. Boadilla del Monte km 5,3 28668, Madrid 1 +34-91-3724760 [email protected] Additional Title Page Footnotes #Co-first authors This study was supported by Spanish Ministry of Economy and Competitiveness (SAF2010-19603 and SAF2014-56671-R, SAF2012-32491, BFU2013-47384-R and BFU2016-78951-R) and Community of Madrid (S2010/BMD-2423, S2017/BMD-3864). Running Title: PLEITROPHIN AND ENERGY METABOLISM Aims/hypothesis: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth, migration and survival. -
Pleiotrophin Is a Neurotrophic Factor for Spinal Motor Neurons
Pleiotrophin is a neurotrophic factor for spinal motor neurons Ruifa Mi, Weiran Chen, and Ahmet Ho¨ ke* Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287 Edited by Thomas M. Jessell, Columbia University Medical Center, New York, NY, and approved January 18, 2007 (received for review April 21, 2006) Regeneration in the peripheral nervous system is poor after chronic facial motor neurons against cell death induced by deprivation from denervation. Denervated Schwann cells act as a ‘‘transient target’’ target-derived neurotrophic support. by secreting growth factors to promote regeneration of axons but lose this ability with chronic denervation. We discovered that the Results mRNA for pleiotrophin (PTN) was highly up-regulated in acutely PTN Is Up-Regulated in Denervated Schwann Cells and Muscle After denervated distal sciatic nerves, but high levels of PTN mRNA were Axotomy. To identify candidate neurotrophic factors underlying not maintained in chronically denervated nerves. PTN protected adaptive responses to chronic nerve degeneration, we used focused spinal motor neurons against chronic excitotoxic injury and caused cDNA microarrays to investigate the gene expression of neurotro- increased outgrowth of motor axons out of the spinal cord ex- phic factors in denervated Schwann cells. In microarray experi- plants and formation of ‘‘miniventral rootlets.’’ In neonatal mice, ments, 2 and 7 days after the sciatic nerve transection, PTN mRNA PTN protected the facial motor neurons against cell death induced was up-regulated in the distal denervated segments compared with by deprivation from target-derived growth factors. Similarly, PTN the contralateral side (data not shown). To confirm the up- significantly enhanced regeneration of myelinated axons across a regulation of the PTN mRNA observed in the microarray analysis graft in the transected sciatic nerve of adult rats. -
Ephrin-A1 Expression Contributes to the Malignant Characteristics of A
843 HEPATOBILIARY DISEASE Ephrin-A1 expression contributes to the malignant Gut: first published as 10.1136/gut.2004.049486 on 11 May 2005. Downloaded from characteristics of a-fetoprotein producing hepatocellular carcinoma H Iida, M Honda, H F Kawai, T Yamashita, Y Shirota, B-C Wang, H Miao, S Kaneko ............................................................................................................................... Gut 2005;54:843–851. doi: 10.1136/gut.2004.049486 Background and aims: a-Fetoprotein (AFP), a tumour marker for hepatocellular carcinoma (HCC), is associated with poor prognosis. Using cDNA microarray analysis, we previously found that ephrin-A1, an angiogenic factor, is the most differentially overexpressed gene in AFP producing hepatoma cell lines. In the present study, we investigated the significance of ephrin-A1 expression in HCC. See end of article for Methods: We examined ephrin-A1 expression and its effect on cell proliferation and gene expression in authors’ affiliations five AFP producing hepatoma cell lines, three AFP negative hepatoma cell lines, and 20 human HCC ....................... specimens. Correspondence to: Results: Ephrin-A1 expression levels were lowest in normal liver tissue, elevated in cirrhotic tissue, and Dr S Kaneko, Department further elevated in HCC specimens. Ephrin-A1 expression was strongly correlated with AFP expression of Cancer Gene (r = 0.866). We showed that ephrin-A1 induced expression of AFP. This finding implicates ephrin-A1 in Regulation, Kanazawa University Graduate the mechanism of AFP induction in HCC. Ephrin-A1 promoted the proliferation of ephrin-A1 School of Medical Science, underexpressing HLE cells, and an ephrin-A1 antisense oligonucleotide inhibited the proliferation of 13-1 Takara-Machi, ephrin-A1 overexpressing Huh7 cells. -
Engrailed and Fgf8 Act Synergistically to Maintain the Boundary Between Diencephalon and Mesencephalon Scholpp, S., Lohs, C
5293 Erratum Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon Scholpp, S., Lohs, C. and Brand, M. Development 130, 4881-4893. An error in this article was not corrected before going to press. Throughout the paper, efna4 should be read as EphA4, as the authors are referring to the gene encoding the ephrin A4 receptor (EphA4) and not to that encoding its ligand ephrin A4. We apologise to the authors and readers for this mistake. Research article 4881 Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon Steffen Scholpp, Claudia Lohs and Michael Brand* Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany Department of Genetics, University of Dresden (TU), Pfotenhauer Strasse 108, 01307 Dresden, Germany *Author for correspondence (e-mail: [email protected]) Accepted 23 June 2003 Development 130, 4881-4893 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00683 Summary Specification of the forebrain, midbrain and hindbrain However, a patch of midbrain tissue remains between the primordia occurs during gastrulation in response to signals forebrain and the hindbrain primordia in such embryos. that pattern the gastrula embryo. Following establishment This suggests that an additional factor maintains midbrain of the primordia, each brain part is thought to develop cell fate. We find that Fgf8 is a candidate for this signal, as largely independently from the others under the influence it is both necessary and sufficient to repress pax6.1 and of local organizing centers like the midbrain-hindbrain hence to shift the DMB anteriorly independently of the boundary (MHB, or isthmic) organizer. -
On the Turning of Xenopus Retinal Axons Induced by Ephrin-A5
Development 130, 1635-1643 1635 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00386 On the turning of Xenopus retinal axons induced by ephrin-A5 Christine Weinl1, Uwe Drescher2,*, Susanne Lang1, Friedrich Bonhoeffer1 and Jürgen Löschinger1 1Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany 2MRC Centre for Developmental Neurobiology, King’s College London, New Hunt’s House, Guy’s Hospital Campus, London SE1 1UL, UK *Author for correspondence (e-mail: [email protected]) Accepted 13 January 2003 SUMMARY The Eph family of receptor tyrosine kinases and their turning or growth cone collapse when confronted with ligands, the ephrins, play important roles during ephrin-A5-Fc bound to beads. However, when added in development of the nervous system. Frequently they exert soluble form to the medium, ephrin-A5 induces growth their functions through a repellent mechanism, so that, for cone collapse, comparable to data from chick. example, an axon expressing an Eph receptor does not The analysis of growth cone behaviour in a gradient of invade a territory in which an ephrin is expressed. Eph soluble ephrin-A5 in the ‘turning assay’ revealed a receptor activation requires membrane-associated ligands. substratum-dependent reaction of Xenopus retinal axons. This feature discriminates ephrins from other molecules On fibronectin, we observed a repulsive response, with the sculpturing the nervous system such as netrins, slits and turning of growth cones away from higher concentrations class 3 semaphorins, which are secreted molecules. While of ephrin-A5. On laminin, retinal axons turned towards the ability of secreted molecules to guide axons, i.e. -
Pleiotrophin Regulates the Ductular Reaction by Controlling the Migration
Gut Online First, published on March 10, 2015 as 10.1136/gutjnl-2014-308176 Hepatology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2014-308176 on 16 January 2015. Downloaded from Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches Gregory A Michelotti,1 Anikia Tucker,1 Marzena Swiderska-Syn,1 Mariana Verdelho Machado,1 Steve S Choi,1,2 Leandi Kruger,1 Erik Soderblom,3 J Will Thompson,3 Meredith Mayer-Salman,3 Heather A Himburg,4 Cynthia A Moylan,1,2 Cynthia D Guy,5 Katherine S Garman,1,2 Richard T Premont,1 John P Chute,4 Anna Mae Diehl1 ▸ Additional material is ABSTRACT published online only. To view Objective The ductular reaction (DR) involves Significance of this study please visit the journal online (http://dx.doi.org/10.1136/ mobilisation of reactive-appearing duct-like cells (RDC) gutjnl-2014-308176). along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space 1Division of Gastroenterology, What is already known about this subject? Duke University, Durham, of Disse. Perivascular cells in stem cell niches produce ▸ Various types of liver injury promote a ductular North Carolina, USA pleiotrophin (PTN) to inactivate the PTN receptor, protein reaction (DR) characterised by the periportal 2Section of Gastroenterology, tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby accumulation of small ductules, myofibroblasts Durham Veterans Affairs augmenting phosphoprotein-dependent signalling. We and collagen matrix. Medical Center, Durham, ▸ Pleiotrophin (PTN) is a heparin-binding growth North Carolina, USA hypothesised that the DR is regulated by PTN/PTPRZ1 3Proteomics Center, signalling. -
Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4. -
Genetic Drivers of Pancreatic Islet Function
| INVESTIGATION Genetic Drivers of Pancreatic Islet Function Mark P. Keller,*,1 Daniel M. Gatti,†,1 Kathryn L. Schueler,* Mary E. Rabaglia,* Donnie S. Stapleton,* Petr Simecek,† Matthew Vincent,† Sadie Allen,‡ Aimee Teo Broman,§ Rhonda Bacher,§ Christina Kendziorski,§ Karl W. Broman,§ Brian S. Yandell,** Gary A. Churchill,†,2 and Alan D. Attie*,2 *Department of Biochemistry, §Department of Biostatistics and Medical Informatics, and **Department of Horticulture, University of Wisconsin–Madison, Wisconsin 53706-1544, †The Jackson Laboratory, Bar Harbor, Maine 06409, and ‡Maine School of Science and Mathematics, Limestone, Maine 06409, ORCID IDs: 0000-0002-7405-5552 (M.P.K.); 0000-0002-4914-6671 (K.W.B.); 0000-0001-9190-9284 (G.A.C.); 0000-0002-0568-2261 (A.D.A.) ABSTRACT The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for a-cells, and another specific for d-cells. -
Hydrogel Mediated Delivery of Trophic Factors for Neural Repair Joshua S
Advanced Review Hydrogel mediated delivery of trophic factors for neural repair Joshua S. Katz1 and Jason A. Burdick∗ Neurotrophins have been implicated in a variety of diseases and their delivery to sites of disease and injury has therapeutic potential in applications including spinal cord injury, Alzheimer’s disease, and Parkinson’s disease. Biodegradable polymers, and specifically, biodegradable water-swollen hydrogels, may be advantageous as delivery vehicles for neurotrophins because of tissue-like properties, tailorability with respect to degradation and release behavior, and a history of biocompatibility. These materials may be designed to degrade via hydrolytic or enzymatic mechanisms and can be used for the sustained delivery of trophic factors in vivo. Hydrogels investigated to date include purely synthetic to purely natural, depending on the application and intended release profiles. Also, flexibility in material processing has allowed for the investigation of injectable materials, the development of scaffolding and porous conduits, and the use of composites for tailored molecule delivery profiles. It is the objective of this review to describe what has been accomplished in this area thus far and to remark on potential future directions in this field. Ultimately, the goal is to engineer optimal biomaterials to deliver molecules in a controlled and dictated manner that can promote regeneration and healing for numerous neural applications. 2008 John Wiley & Sons, Inc. Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol. 2009 1 128–139 -
Ephrin-A Binding and Epha Receptor Expression Delineate the Matrix Compartment of the Striatum
The Journal of Neuroscience, June 15, 1999, 19(12):4962–4971 Ephrin-A Binding and EphA Receptor Expression Delineate the Matrix Compartment of the Striatum L. Scott Janis, Robert M. Cassidy, and Lawrence F. Kromer Department of Cell Biology and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007 The striatum integrates limbic and neocortical inputs to regulate matrix neurons. In situ hybridization for EphA RTKs reveals that sensorimotor and psychomotor behaviors. This function is de- the two different ligand binding patterns strictly match pendent on the segregation of striatal projection neurons into the mRNA expression patterns of EphA4 and EphA7. anatomical and functional components, such as the striosome Ligand–receptor binding assays indicate that ephrin-A1 and and matrix compartments. In the present study the association ephrin-A4 selectively bind EphA4 but not EphA7 in the lysates of ephrin-A cell surface ligands and EphA receptor tyrosine of striatal tissue. Conversely, ephrin-A2, ephrin-A3, and kinases (RTKs) with the organization of these compartments ephrin-A5 bind EphA7 but not EphA4. These observations im- was determined in postnatal rats. Ephrin-A1 and ephrin-A4 plicate selective interactions between ephrin-A molecules and selectively bind to EphA receptors on neurons restricted to the EphA RTKs as potential mechanisms for regulating the com- matrix compartment. Binding is absent from the striosomes, partmental organization of the striatum. which were identified by m-opioid -
Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.