Generation of High Expressing CHO Cell Lines for The

Total Page:16

File Type:pdf, Size:1020Kb

Generation of High Expressing CHO Cell Lines for The Generation of high expressing CHO cell lines for the production of recombinant antibodies using optimized signal peptides and a novel ER stress based selection system Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Lars Kober aus Riesa 1. Referent: apl. Professor Dr. Jürgen Bode 2. Referent: Professor Dr. Stefan Dübel Eingereicht am: 02.02.2012 Mündliche Prüfung (Disputation) am: 15.06.2012 Druckjahr 2012 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Kober L, Zehe C, Bode J. 2012. Development of a novel ER stress based selection system for the isolation of highly productive clones. (ahead of print) Kober L, Zehe C, Bode J. 2012. Optimized signal peptides for the development of high expressing CHO cell lines. (in submission) Quote „The fact that an opinion has been widely held is no evidence whatever it is not utterly absurd” Bertrand Russell (1872-1970) Contents Contents page 1. Zusammenfassung.................................................................................................................. 1 2. Abstract ................................................................................................................................... 3 3. Introduction.............................................................................................................................. 5 3.1. High-level production of recombinant proteins in CHO cells ....................................... 5 3.2. Protein secretion and signal peptides .......................................................................... 7 3.3. Mammalian ER stress................................................................................................... 9 4. Aim of the thesis .................................................................................................................... 13 5. Materials and methods .......................................................................................................... 14 5.1. Materials...................................................................................................................... 14 5.2. Molecular biological methods ..................................................................................... 24 5.3. Cell biological methods ............................................................................................... 50 5.4. Analytical and biochemical methods .......................................................................... 57 6. Results................................................................................................................................... 62 6.1. Increase of antibody secretion by signal peptide optimization................................... 62 6.2. General outline: Development of an alternative selection system for high producing clones .................................................................................................................................... 77 6.3. Analyzing the influence of antibody expression on ER stress ................................... 81 6.4. Generation and analysis of Master 1 cell lines containing an RMCE acceptor construct (RMCE target) ....................................................................................................... 84 6.5. Generation and analysis of Mock and Master 2 cell lines.......................................... 88 6.6. Generation of ER stress reporter cell lines................................................................. 91 6.7. Evaluating the influence of antibody expression on ER stress reporter constructs 101 i Contents 6.8. Impact of BFA or CSN treatment on ER stress reporter constructs ........................ 104 6.9. Establishment of a novel ER stress based selection system for the isolation of high- producing clones ................................................................................................................. 106 7. Discussion ........................................................................................................................... 115 7.1. Increase of antibody secretion by signal peptide optimization................................. 115 7.2. Development of an alternative selection system for high producing clones ............ 118 8. Outlook ................................................................................................................................ 124 9. Appendix.............................................................................................................................. 125 9.1. FACS analysis of Mock Reporter and Master 2 Reporter cell lines......................... 125 9.2. Abbreviations ............................................................................................................ 146 10. References ....................................................................................................................... 150 10.1. Literature ............................................................................................................... 150 10.2. Patents .................................................................................................................. 164 11. Acknowledgements .......................................................................................................... 165 ii List of figures List of figures page Fig. 1: Schematic representation of ER stress pathways 11 Fig. 2: Nucleotide sequence of the first two codons of the immunoglobulin heavy chain 25 Fig. 3: Nucleotide sequence of the first two codons of the immunoglobulin light chain 25 Fig. 4: Schematic representation of the cloning procedure for first generation expression vectors 26 Fig. 5: Schematic representation of the cloning procedure for second generation expression vectors 27 Fig. 6: Schematic representation of the cloning procedure for third generation expression vectors 28 Fig. 7: Nucleotide sequence of the BbsI/BbsI cloning site in front of the immunoglobulin heavy chain 28 Fig. 8: Nucleotide sequence of the BsmBI/BsmBI cloning site in front of the immunoglobulin light chain 28 Fig. 9: Schematic representation of vector 1188 (SV40-eGFP control) 29 Fig. 10: Nucleotide sequence upstream of the eGFP reporter gene of vector 1188 (SV40-eGFP control) 29 Fig. 11: Nucleotide sequence upstream of the eGFP reporter gene of vector 1192 (3 x ERSE I reporter) 30 Fig. 12: Nucleotide sequence upstream of the eGFP reporter gene of vector 1193 (3 x ERSE II reporter) 30 Fig. 13: Nucleotide sequence upstream of the eGFP reporter gene of vector 1194 (3 x UPRE reporter) 31 Fig. 14: Nucleotide sequence upstream of the eGFP reporter gene of vector 1195 (3 x AARE reporter) 31 Fig. 15: Schematic representation of vector 917 (SV40-d2eGFP control) 32 iii List of figures Fig. 16: Nucleotide sequence upstream of the d2eGFP reporter gene of vector 917 (SV40- d2eGFP control) 32 Fig. 17: Nucleotide sequence upstream of the d2eGFP reporter gene of vector 1101 (CALR reporter) 33 Fig. 18: Nucleotide sequence upstream of the d2eGFP reporter gene of vector 1103 (GRP78 reporter) 34 Fig. 19: Nucleotide sequence upstream of the d2eGFP reporter gene of vector 1104 (GRP94 reporter) 35 Fig. 20: Nucleotide sequence of the XBP1 intron reporter gene of vector 1023 (Intron Reporter) 36 Fig. 21: Schematic representation of the cloning procedure of vector 527 37 Fig. 22: Nucleotide sequence upstream of the eGFP reporter gene of vector 527 37 Fig. 23: Schematic representation of vector 673 38 Fig. 24: Schematic representation of vector 957 39 Fig. 25: Schematic representation of vector 1071 40 Fig. 26: Schematic representation of vector 1096 41 Fig. 27: Screening of different natural and artificial signal peptides in transiently transfected CHO K1 cells 65 Fig. 28: Evaluation of selected signal peptides in transiently transfected CHO K1 cells 66 Fig. 29: Secondary mRNA structure of signal peptide E and E8 69 Fig. 30: Analysis of natural and mutated signal peptides in transiently transfected CHO K1 cells 70 Fig 31: Evaluation of selected natural and mutated signal peptides in transiently transfected CHO K1 cells 71 Fig. 32: Cell specific productivities of mini-pools used for fed-batch experiments 74 Fig. 33: Fed-batch experiments with selected mini-pools 75 iv List of figures Fig. 34: Fed-batch experiments with selected mini-pools 76 Fig. 35: Schematic representation of the novel selection system based on ER stress (exemplified shown with GRP78 promoter) 77 Fig. 36: General outline of the generation of Master 1 Master 2A and Mock cell lines and their conversion to ER stress reporter cell lines 79 Fig. 37: General outline of the conversion of Master 2A and Mock cell lines in control cell lines 80 Fig. 38: Correlation between antibody productivity and mRNA levels of ER stress factors in selected production clones 83 Fig. 39: Schematic representation of vector 957 84 Fig. 40: Single cell sorting after transfection with vector 957 84 Fig. 41: FACS analysis of Master 1 cell clones containing a DsRed RMCE acceptor construct 85 Fig. 42: Schematic representation of RMCE procedure 85 Fig. 43: FACS analysis of Master 1 cell clones before and after RMCE 86 Fig. 44: Schematic representation of vector 1096 88 Fig. 45: Schematic representation of
Recommended publications
  • Chymotrypsin-Like Peptidases in Insects
    Chymotrypsin-like peptidases in insects Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Fachbereich Biologie/Chemie der Universität Osnabrück vorgelegt von Gunnar Bröhan Osnabrück, Mai 2010 TABLE OF CONTENTS I Table of contents 1. Introduction 1 1.1. Serine endopeptidases 1 1.2. The structure of S1A chymotrypsin-like peptidases 2 1.3. Catalytic mechanism of chymotrypsin-like peptidases 6 1.4. Insect chymotrypsin-like peptidases 9 1.4.1. Chymotrypsin-like peptidases in insect immunity 9 1.4.2. Role of chymotrypsin-like peptidases in digestion 14 1.4.3. Involvement of chymotrypsin-like peptidases in molt 16 1.5. Objective of the work 18 2. Material and Methods 20 2.1. Material 20 2.1.1. Culture Media 20 2.1.2. Insects 20 2.2. Molecular biological methods 20 2.2.1. Tissue preparations for total RNA isolation 20 2.2.2. Total RNA isolation 21 2.2.3. Reverse transcription 21 2.2.4. Quantification of nucleic acids 21 2.2.5. Chemical competent Escherichia coli 21 2.2.6. Ligation and transformation in E. coli 21 2.2.7. Preparation of plasmid DNA 22 2.2.8. Restriction enzyme digestion of DNA 22 2.2.9. DNA gel-electrophoresis and DNA isolation 22 2.2.10. Polymerase-chain-reaction based methods 23 2.2.10.1. RACE-PCR 23 2.2.10.2. Quantitative Realtime PCR 23 2.2.10.3. Megaprimer PCR 24 2.2.11. Cloning of insect CTLPs 25 2.2.12. Syntheses of Digoxigenin-labeled DNA and RNA probes 26 2.2.13.
    [Show full text]
  • Concentration of Tissue Angiotensin II Increases with Severity of Experimental Pancreatitis
    MOLECULAR MEDICINE REPORTS 8: 335-338, 2013 Concentration of tissue angiotensin II increases with severity of experimental pancreatitis HIROYUKI FURUKAWA1, ATSUSHI SHINMURA1, HIDEHIRO TAJIMA1, TOMOYA TSUKADA1, SHIN-ICHI NAKANUMA1, KOICHI OKAMOTO1, SEISHO SAKAI1, ISAMU MAKINO1, KEISHI NAKAMURA1, HIRONORI HAYASHI1, KATSUNOBU OYAMA1, MASAFUMI INOKUCHI1, HISATOSHI NAKAGAWARA1, TOMOHARU MIYASHITA1, HIDETO FUJITA1, HIROYUKI TAKAMURA1, ITASU NINOMIYA1; HIROHISA KITAGAWA1, SACHIO FUSHIDA1, TAKASHI FUJIMURA1, TETSUO OHTA1, TOMOHIKO WAKAYAMA2 and SHOICHI ISEKI2 1Department of Gastroenterological Surgery, Division of Cancer Medicine; 2Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan Received January 23, 2013; Accepted May 30, 2013 DOI: 10.3892/mmr.2013.1509 Abstract. Necrotizing pancreatitis is a serious condition that Introduction is associated with high morbidity and mortality. Although vasospasm is reportedly involved in necrotizing pancreatitis, Acute pancreatitis, particularly the necrotizing type, is the underlying mechanism is not completely clear. In addition, associated with high morbidity and mortality. Necrotizing the local renin-angiotensin system has been hypothesized to pancreatitis is characterized by parenchymal non-enhance- be involved in the progression of pancreatitis and trypsin has ment on contrast-enhanced computed tomography images (1). been shown to generate angiotensin II under weakly acidic Although necrosis is irreversible, certain patients exhibiting conditions. However, to the best of our knowledge, no studies this pancreatic parenchymal non-enhancement recover have reported elevated angiotensin II levels in tissue with with normal pancreatic conditions (2). Vasospasm has been pancreatitis. In the present study, the concentration of pancre- implicated in the development of pancreatic ischemia and atic angiotensin II in rats with experimentally induced acute necrosis (3); however, the precise underlying mechanism is pancreatitis was measured.
    [Show full text]
  • In Escherichia Coli (Synthetic Oligonucleotide/Gene Expression/Industrial Enzyme) J
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 3671-3675, June 1983 Biochemistry Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme) J. S. EMTAGE*, S. ANGALt, M. T. DOELt, T. J. R. HARRISt, B. JENKINS*, G. LILLEYt, AND P. A. LOWEt Departments of *Molecular Genetics, tMolecular Biology, and tFermentation Development, Celltech Limited, 250 Bath Road, Slough SL1 4DY, Berkshire, United Kingdom Communicated by Sydney Brenner, March 23, 1983 ABSTRACT A gene for calf prochymosin (prorennin) has been maturation conditions and remained insoluble on neutraliza- reconstructed from chemically synthesized oligodeoxyribonucleo- tion, it was possible that purification as well as activation could tides and cloned DNA copies of preprochymosin mRNA. This gene be achieved. has been inserted into a bacterial expression plasmid containing We describe here the construction of E. coli plasmids de- the Escherichia coli tryptophan promoter and a bacterial ribo- signed to express the prochymosin gene from the trp promoter some binding site. Induction oftranscription from the tryptophan and the isolation and conversion of this prochymosin to en- promoter results in prochymosin synthesis at a level of up to 5% active of total protein. The enzyme has been purified from bacteria by zymatically chymosin. extraction with urea and chromatography on DEAE-celiulose and MATERIALS AND METHODS converted to enzymatically active chymosin by acidification and neutralization. Bacterially produced chymosin is as effective in Materials. DNase I, pepstatin A, and phenylmethylsulfonyl clotting milk as the natural enzyme isolated from calf stomach. fluoride were obtained from Sigma. Calf prochymosin (Mr 40,431) and chymosin (Mr 35,612) were purified from stomachs Chymosin (rennin) is an aspartyl proteinase found in the fourth from 1-day-old calves (1).
    [Show full text]
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Genetic Snapshots of the Rhizobium Species NGR234 Genome
    Article Genetic snapshots of the Rhizobium species NGR234 genome VIPREY, Virginie, et al. Abstract In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than I 12 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome, that of NGR234 is partitioned into three replicons: a chromosome of about 3.5 Mb, a megaplasmid of more than 2 Mb (pNGR234b) and pNGR234a, a 536,165 bp plasmid that carries most of the genes required for symbioses with legumes. Symbiotic loci represent only a small portion of all the genes coded by rhizobial genomes, however. To rapidly characterize the two largest replicons of NGR234, the genome of strain ANU265 (a derivative strain cured of pNGR234a) was analyzed by shotgun sequencing. Reference VIPREY, Virginie, et al. Genetic snapshots of the Rhizobium species NGR234 genome. Genome Biology, 2000, vol. 1, no. 6, p. 1-17 DOI : 10.1186/gb-2000-1-6-research0014 PMID : 11178268 Available at: http://archive-ouverte.unige.ch/unige:84778 Disclaimer: layout of this document may differ from the published version. 1 / 1 http://genomebiology.com/2000/1/6/research/0014.1 Research Genetic snapshots of the Rhizobium species NGR234 genome Virginie Viprey*, André Rosenthal, William J Broughton* and Xavier Perret* Addresses: *Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, chemin de lImpératrice, 1292 Chambésy, Genève, Switzerland. Institut für Molekulare Biotechnologie, Abteilung Genomanalyze, Beutenbergstrasse, 07745 Jena, Germany.
    [Show full text]
  • From Renin- Secreting Tumors of Nonrenal Origin
    Characterization of inactive renin ("prorenin") from renin- secreting tumors of nonrenal origin. Similarity to inactive renin from kidney and normal plasma. S A Atlas, … , M C Ruddy, M Aurell J Clin Invest. 1984;73(2):437-447. https://doi.org/10.1172/JCI111230. Research Article Inactive renin comprises well over half the total renin in normal human plasma. There is a direct relationship between active and inactive renin levels in normal and hypertensive populations, but the proportion of inactive renin varies inversely with the active renin level; as much as 98% of plasma renin is inactive in patients with low renin, whereas the proportion is consistently lower (usually 20-60%) in high-renin states. Two hypertensive patients with proven renin- secreting carcinomas of non-renal origin (pancreas and ovary) had high plasma active renin (119 and 138 ng/h per ml) and the highest inactive renin levels we have ever observed (5,200 and 14,300 ng/h per ml; normal range 3-50). The proportion of inactive renin (98-99%) far exceeded that found in other patients with high active renin levels. A third hypertensive patient with a probable renin-secreting ovarian carcinoma exhibited a similar pattern. Inactive renins isolated from plasma and tumors of these patients were biochemically similar to semipurified inactive renins from normal plasma or cadaver kidney. All were bound by Cibacron Blue-agarose, were not retained by pepstatin-Sepharose, and had greater apparent molecular weights (Mr) than the corresponding active forms. Plasma and tumor inactive renins from the three patients were similar in size (Mr 52,000-54,000), whereas normal plasma inactive renin had a slightly larger Mr than that from kidney (56,000 vs.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • 2.2.3 Generation of Genomic DNA Sequences from Plant Sources
    Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk The Hong Kong Polytechnic University Department of Health Technology and Informatics Isolation and Characterisation of Nucleases from Various Biological Sources for Further Application in Nucleic Acid Analysis By CHEUNG Tsz Shan A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy March 2012 CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no materials previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgment has been made in the text.
    [Show full text]
  • And SPP-Like Proteases☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1828 (2013) 2828–2839 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases☆ Matthias Voss a, Bernd Schröder c, Regina Fluhrer a,b,⁎ a Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany b DZNE — German Center for Neurodegenerative Diseases, Munich, Schillerstr. 44, 80336 Munich, Germany c Biochemical Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany article info abstract Article history: Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and Received 27 December 2012 SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane Received in revised form 25 March 2013 domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of Accepted 29 March 2013 SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane Keywords: (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to Regulated intramembrane proteolysis fi Intramembrane-cleaving proteases exhibit distinct functions. Here, we review the substrates of these proteases identi ed to date as well as GxGD proteases the current state of knowledge about the physiological implications of these proteolytic events as deduced Signal peptide peptidase from in vivo studies.
    [Show full text]
  • Mung Bean Nuclease Product Information
    Certificate of Analysis Mung Bean Nuclease: Part No. Size (units) Part# 9PIM431 M431A 2,000 Revised 4/18 10X Reaction Buffer (M432A): When the Mung Bean Nuclease 10X Reaction Buffer, provided with this enzyme, is diluted 1:10, it has a composition of 0.03M sodium acetate (pH 5.0), 0.05M NaCl and 1mM ZnCl2. Enzyme Storage Buffer: Mung Bean Nuclease is supplied in 10mM Tris-HCl (pH 7.5), 50mM NaCl, 0.01% Triton® X-100 and 50% glycerol. Source: Mung bean sprouts (Phaseolus aureus). Unit Definition: One unit is defined as the amount of enzyme required to produce 1µg of acid-soluble material per minute *AF9PIM431 0418M431* at 37°C. The reaction conditions are: 30mM sodium acetate (pH 5.0), 50mM NaCl, 1mM ZnCl2, 5% glycerol and 0.5mg/ml AF9PIM431 0418M431 denatured calf thymus DNA. See the unit concentration on the Product Information Label. Storage Temperature: Store at –20°C. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Quality Control Assays Contaminant Assay Endonuclease/Nickase Activity: To confirm the absence of contaminating endonuclease/nickase activity, 1µg of lambda DNA/Hind III markers (Cat.# G1711) is incubated with Mung Bean Nuclease for 10 minutes at room temperature. The mark- ers are then separated by electrophoresis on a 1% agarose gel and stained with ethidium bromide. Markers that have been Promega Corporation incubated with ≥60 units of enzyme will remain as intact bands with a minimal amount of smearing. 2800 Woods Hollow Road Madison, WI 53711-5399 USA Telephone 608-274-4330 Toll Free 800-356-9526 Fax 608-277-2516 Internet www.promega.com PRODUCT USE LIMITATIONS, WARRANTY, DISCLAIMER Promega manufactures products for a number of intended uses.
    [Show full text]
  • John H. Northrop
    J OHN H . N ORTHROP T h e preparation of pure enzymes and virus proteins* Nobel Lecture, December 12, 1946 The problem of the chemical nature of the substances which control the reactions occurring in living cells has been a subject of research, and also of controversy, for nearly two hundred years. Before the eighteenth century these reactions were considered as "vital processes", outside the realm of experimental science. The work of Spallanzani, Payen and Persoz, Schwann, Kühne, and finally Buchner proved that many of these reactions could take place without living cells and were probably caused by the presence of small amounts of unstable and active substances, which Kühne called "enzymes". Berzelius, a century ago, pointed out that these enzymes were similar to the catalysts of the chemist and suggested that they be considered as special catalysts formed by the cells. This hypothesis was far ahead of its time and met with great opposition, since many workers considered that enzyme reac- tions differed qualitatively from ordinary chemical reactions. The work of Tamman, Arrhenius, Henri, Michaelis, Nelson, von Euler, Willstätter, War- burg, and other chemists, however, has shown that Berzelius’ viewpoint was correct and enzyme reactions are now considered a special kind of catalysis which does not differ qualitatively from other catalytic reactions. While the study of enzyme reactions made rapid progress all attempts to isolate an enzyme and so determine its chemical nature were unsuccessful until recently. The early workers were of the opinion that enzymes were probably pro- teins and in 1896 Pekelharing isolated a protein from gastric juice which he considered to be the enzyme pepsin.
    [Show full text]
  • Trypsinogen Isoforms in the Ferret Pancreas Eszter Hegyi & Miklós Sahin-Tóth
    www.nature.com/scientificreports OPEN Trypsinogen isoforms in the ferret pancreas Eszter Hegyi & Miklós Sahin-Tóth The domestic ferret (Mustela putorius furo) recently emerged as a novel model for human pancreatic Received: 29 June 2018 diseases. To investigate whether the ferret would be appropriate to study hereditary pancreatitis Accepted: 25 September 2018 associated with increased trypsinogen autoactivation, we purifed and cloned the trypsinogen isoforms Published: xx xx xxxx from the ferret pancreas and studied their functional properties. We found two highly expressed isoforms, anionic and cationic trypsinogen. When compared to human cationic trypsinogen (PRSS1), ferret anionic trypsinogen autoactivated only in the presence of high calcium concentrations but not in millimolar calcium, which prevails in the secretory pathway. Ferret cationic trypsinogen was completely defective in autoactivation under all conditions tested. However, both isoforms were readily activated by enteropeptidase and cathepsin B. We conclude that ferret trypsinogens do not autoactivate as their human paralogs and cannot be used to model the efects of trypsinogen mutations associated with human hereditary pancreatitis. Intra-pancreatic trypsinogen activation by cathepsin B can occur in ferrets, which might trigger pancreatitis even in the absence of trypsinogen autoactivation. Te digestive protease precursor trypsinogen is synthesized and secreted by the pancreas to the duodenum where it becomes activated to trypsin1. Te activation process involves limited proteolysis of the trypsinogen activation peptide by enteropeptidase, a brush-border serine protease specialized for this sole purpose. Te activation peptide is typically an eight amino-acid long N-terminal sequence, which contains a characteristic tetra-aspartate motif preceding the activation site peptide bond, which corresponds to Lys23-Ile24 in human trypsinogens.
    [Show full text]