Plant Signaling Peptides, Novel Insights Into Their Processing and Role in Root Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
And SPP-Like Proteases☆
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1828 (2013) 2828–2839 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases☆ Matthias Voss a, Bernd Schröder c, Regina Fluhrer a,b,⁎ a Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany b DZNE — German Center for Neurodegenerative Diseases, Munich, Schillerstr. 44, 80336 Munich, Germany c Biochemical Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany article info abstract Article history: Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and Received 27 December 2012 SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane Received in revised form 25 March 2013 domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of Accepted 29 March 2013 SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane Keywords: (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to Regulated intramembrane proteolysis fi Intramembrane-cleaving proteases exhibit distinct functions. Here, we review the substrates of these proteases identi ed to date as well as GxGD proteases the current state of knowledge about the physiological implications of these proteolytic events as deduced Signal peptide peptidase from in vivo studies. -
Supplementary Data
Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type -
Proteolytic Cleavage—Mechanisms, Function
Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms -
Universidade Federal Do Ceará Centro De Ciências Departamento De Bioquímica E Biologia Molecular Programa De Pós-Graduação Em Bioquímica
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA MOHIBULLAH SHAH PROTEOME ANALYSIS OF DEVELOPING SEEDS OF Jatropha curcas L. FORTALEZA 2014 MOHIBULLAH SHAH PROTEOME ANALYSIS OF DEVELOPING SEEDS OF Jatropha curcas L. Tese apresentada ao Curso de Doutorado em Bioquímica do Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, como parte dos requisitos para obtenção do título de Doutor em Bioquímica. Área de concentração: Bioquímica vegetal. Orientador: Prof. Francisco A. P. Campos. Co-orientador: Prof. Fabio C. S. Nogueira. FORTALEZA 2014 Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca de Ciências e Tecnologia S537p Shah, Mohibullah. Proteome analysis of developing seeds of Jatropha curcas L. / Mohibullah Shah. – 2014. 168 f. : il., color., enc. ; 30 cm. Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciência, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Fortaleza, 2014. Área de Concentração: Bioquímica vegetal. Orientação: Prof. Dr. Francisco de Assis de Paiva Campos. Coorientação: Prof. Dr. Fabio César Sousa Nogueira. 1. Plantas oleaginosas. 2. Biodiesel. 3. Pinhão-manso. 4. Espectrometria de massa. I. Título. CDD 574-192 ACKNOWLEDGEMENTS First of all I would like to thank to ALLAH (SWT) , for blessing me good health, courage, strength during the difficult moments and making me enable to reach here. I would also like to thank and appreciate some people who directly or indirectly support me in successful completion of this work. First and foremost, I express my wholehearted gratitude to my respected supervisor, Prof. Francisco A. -
Intramembrane Proteolysis of Β-Amyloid Precursor Protein by Γ-Secretase Is an Unusually Slow Process
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 108 March 2015 1229–1237 1229 Article Intramembrane Proteolysis of b-Amyloid Precursor Protein by g-Secretase Is an Unusually Slow Process Frits Kamp,1 Edith Winkler,1 Johannes Trambauer,1 Amelie Ebke,1 Regina Fluhrer,1,2 and Harald Steiner1,2,* 1Metabolic Biochemistry, Ludwig-Maximilians-University, Mu¨nchen, Germany; and 2DZNE-German Center for Neurodegenerative Diseases, Munich, Germany ABSTRACT Intramembrane proteolysis has emerged as a key mechanism required for membrane proteostasis and cellular signaling. One of the intramembrane-cleaving proteases (I-CLiPs), g-secretase, is also intimately implicated in Alzheimer’s disease, a major neurodegenerative disease and leading cause of dementia. High-resolution crystal structural analyses have revealed that I-CLiPs harbor their active sites buried deeply in the membrane bilayer. Surprisingly, however, the key kinetic constants of these proteases, turnover number kcat and catalytic efficiency kcat/KM, are largely unknown. By investigating the kinetics of intramembrane cleavage of the Alzheimer’s disease-associated b-amyloid precursor protein in vitro and in human embryonic kidney cells, we show that g-secretase is a very slow protease with a kcat value similar to those determined recently for rhomboid-type I-CLiPs. Our results indicate that low turnover numbers may be a general feature of I-CLiPs. INTRODUCTION Intramembrane-cleaving proteases (I-CliPs) are unusual bilayer but are nevertheless water accessible, allowing intra- proteases that cleave their substrates within the membrane. membrane proteolysis to occur (1). However, the detailed Several of these enzymes have been identified in the past mechanism of substrate recruitment and cleavage, as well two decades and studied intensively. -
Trypanosoma Cruzi Presenilin-Like Transmembrane Aspartyl Protease: Characterization and Cellular Localization
biomolecules Article Trypanosoma cruzi Presenilin-Like Transmembrane Aspartyl Protease: Characterization and Cellular Localization Guilherme C. Lechuga 1,2, Paloma Napoleão-Pêgo 1, Carolina C. G. Bottino 1, Rosa T. Pinho 4, David W. Provance-Jr 1,3 and Salvatore G. De-Simone 1,5,* 1 Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; [email protected] (G.C.L.); paloma.pego@cdts.fiocruz.br (P.N.-P.); [email protected] (C.C.G.B.); bill.provance@cdts.fiocruz.br (D.W.P.-J.) 2 Cellular Ultrastructure Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil 3 Interdisciplinary Medical Research Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil 4 Clinical Immunology Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil; rospinho@ioc.fiocruz.br 5 Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24220-008, Brazil * Correspondence: salvatore.dsimone@cdts.fiocruz.br; Tel.: +55-21-3865-8183 Received: 30 September 2020; Accepted: 9 November 2020; Published: 17 November 2020 Abstract: The increasing detection of infections of Trypanosoma cruzi, the etiological agent of Chagas disease, in non-endemic regions beyond Latin America has risen to be a major public health issue. With an impact in the millions of people, current treatments rely on antiquated drugs that produce severe side effects and are considered nearly ineffective for the chronic phase. The minimal progress in the development of new drugs highlights the need for advances in basic research on crucial biochemical pathways in T. -
(SPPL3) in the Shedding Of
bioRxiv preprint doi: https://doi.org/10.1101/317214; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Elucidating the roles of Alzheimer disease-associated proteases and the signal-peptide peptidase-like 3 (SPPL3) in the shedding of glycosyltransferases --------------------------------------------- Assou EL-BATTARI1, Sylvie MATHIEU, Romain SIGAUD, Maëlle PROROK-HAMON, L’Houcine OUAFIK & Charlotte JEANNEAU § Aix-Marseille University and the Institut de Neurophysiopathologie (INP, CNRS UMR7051), and §Faculté d’Odontologie, Faculté de Médecine, 27 Bd J. Moulin, 13385 Marseille Cedex 05, France. 1Correspondence: Assou EL-BATTARI, INSERM U-911 (CRO2), Equipe-4 Faculté de Médecine Timone, 27 Bd Jean Moulin. F-13385 Marseille Cedex 05 – France. Email : [email protected] bioRxiv preprint doi: https://doi.org/10.1101/317214; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 ABSTRACT The Golgi resident glycosyltransferases (GTs) are membrane-bound glycoproteins but are frequently found as soluble proteins in biological fluids where their function remains largely unknown. Previous studies have established that the release of these proteins involved Alzheimer disease-associated proteases such as -secretases (BACE1 and BACE2) and the intramembrane-cleaving aspartyl proteases Presenilins 1 and 2. -
Studies on Oligopeptidase B of Leishmania Major
Studies on Oligopeptidase B of Leishmania major Jane Claire Munday BSc (Hons) MSc A thesis submitted in the fulfillment of the requirement for the degree of Doctor of Philosophy in the Faculty of Veterinary Medicine, University of Glasgow Wellcome Centre for Molecular Parasitology Glasgow Biomedical Research Centre University of Glasgow United Kingdom May 2008 Jane Claire Munday 2008 ii Abstract Peptidases of Leishmania are acknowledged virulence factors. It is hypothesised that peptidases are crucial for the survival of Leishmania in its hosts and that many could be potential targets for new antileishmanial drugs. As such, the investigation of peptidase activity in live Leishmania promastigotes was proposed as a valuable approach by which to increase knowledge on particular peptidases. In order to complete this investigation, it was decided to use short peptidyl fluorogenic substrates, which only fluoresce once the bond linking the peptide to the fluorescent moiety is cleaved. These allow detection of peptidase activity by quantifying the release of the fluorescent moiety. Detection of peptidase activity in live Leishmania using the fluorogenic substrate Bz-R-AMC proved fruitful, enabling study of the activity of the serine peptidase oligopeptidase B (OPB) in live L. major promastigotes. OPB is a member of the Family S9 peptidases, the prolyl-oligopeptidases, which are taxonomically restricted to plants, bacteria and trypanosomatid flagellates. In African and American trypanosomes, OPB has been shown to have important roles: OPB is a virulence factor in Trypanosoma cruzi , mediating entry into host cells, and OPB is released into the serum by African trypanosomes, where it cleaves host blood factors. In this study, the inhibition profile of L. -
Redalyc.HYDROLYSATE ANTIMICROBIAL ACTIVITY RELEASED from BOVINE WHEY PROTEIN CONCENTRATE by the ASPARTYL PROTEASE Eap1 of Sporis
Revista Mexicana de Ingeniería Química ISSN: 1665-2738 [email protected] Universidad Autónoma Metropolitana Unidad Iztapalapa México Tovar-Jiménez, X.; Muro-Urista, C.R; Tellez-Jurado, A.; Mercado-Flores, Y.; Abreu- Corona, A.; Arana-Cuenca, A. HYDROLYSATE ANTIMICROBIAL ACTIVITY RELEASED FROM BOVINE WHEY PROTEIN CONCENTRATE BY THE ASPARTYL PROTEASE Eap1 OF Sporisorium reilianum Revista Mexicana de Ingeniería Química, vol. 16, núm. 1, 2017, pp. 11-18 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=62049878002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Vol. 16, No. 1 (2017) 11-18 Revista Mexicana de Ingeniería Química HYDROLYSATE ANTIMICROBIAL ACTIVITYCONTENIDO RELEASED FROM BOVINE WHEY PROTEINVolumen CONCENTRATE 8, número 3, 2009 BY / THE Volume ASPARTYL 8, number 3, PROTEASE2009 Eap1 OF Sporisorium reilianum HIDROLIZADOS CON ACTIVIDAD ANTIMICROBIANA LIBERADOS POR LA ACCION´ DE213 LA Derivation ASPARTIL and application PROTEASA of the Stefan-Maxwell Eap1 equations DE Sporisorium reilianum A PARTIR DE UN CONCENTRADO PROTEICO DEL SUERO LACTEO´ BOVINO (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 1 2 1 1 1 X. Tovar-Jim enezStephen´ * ,Whitaker C.R Muro-Urista , A. Tellez-Jurado , Y. Mercado-Flores , A. Abreu-Corona , A. 1 Arana-Cuenca 1 Universidad Polit´ecnicade Pachuca, Carr. Pachuca-Cd. Sahag´unKm. 20, Zempoala, Hidalgo. M´exico. 2 DepartamentoBiotecnología de Ingenier´ıaQu´ımicae / Biotechnology Investigaci´on.Instituto Tecnol´ogicode Toluca. -
Structural and Kinetic Analysis of Escherichia Coli Signal Peptide Peptidase A
Structural and Kinetic Analysis of Escherichia coli Signal Peptide Peptidase A by Apollos C. Kim B.A. (Psychology), Simon Fraser University, 2001 B.Sc. (Biology), Seoul National University, Korea, 1992 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biochemistry Faculty of Science Apollos C. Kim 2013 SIMON FRASER UNIVERSITY Summer 2013 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Apollos C. Kim Degree: Doctor of Philosophy (Molecular Biology and Biochemistry) Title of Thesis: Structural and kinetic analysis of Escherichia coli signal peptide peptidase A Examining Committee: Chair: Frederic Pio, Associate Professor Mark Paetzel Senior Supervisor Associate Professor Nicholas Harden Supervisor Professor Edgar C. Young Supervisor Associate Professor Dipankar Sen Internal Examiner Professor Ross MacGillivray External Examiner Professor Department of Biochemistry and Molecular Biology University of British Columbia Date Defended/Approved: June 19, 2013 ii Partial Copyright Licence iii Abstract Secretory proteins contain a signal peptide at their N-terminus. The signal peptide functions to guide proteins to the membrane and is cleaved off by signal peptidase. The remnant signal peptides must be removed from the membrane to prevent their accumulation which can lead to membrane destabilization. Escherichia coli signal peptide peptidase A (SppAEC) has been identified as a major enzyme that processes the remnant signal peptide to smaller fragments.