Caseinolytic and Milk-Clotting Activities from Moringa Oleifera Flowers

Total Page:16

File Type:pdf, Size:1020Kb

Caseinolytic and Milk-Clotting Activities from Moringa Oleifera Flowers View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Chemistry 135 (2012) 1848–1854 Contents lists available at SciVerse ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Caseinolytic and milk-clotting activities from Moringa oleifera flowers Emmanuel V. Pontual 1, Belany E.A. Carvalho 1, Ranilson S. Bezerra, Luana C.B.B. Coelho, Thiago H. Napoleão, ⇑ Patrícia M.G. Paiva Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil article info abstract Article history: This work reports the detection and characterization of caseinolytic and milk-clotting activities from Received 28 February 2012 Moringa oleifera flowers. Proteins extracted from flowers were precipitated with 60% ammonium sul- Received in revised form 14 May 2012 phate. Caseinolytic activity of the precipitated protein fraction (PP) was assessed using azocasein, as well Accepted 25 June 2012 as a -, b- and j-caseins as substrates. Milk-clotting activity was analysed using skim milk. The effects of Available online 30 June 2012 s heating (30–100 °C) and pH (3.0–11.0) on enzyme activities were determined. Highest caseinolytic activ- ity on azocasein was detected after previous incubation of PP at pH 4.0 and after heating at 50 °C. Milk- Keywords: clotting activity, detected only in the presence of CaCl , was highest at incubation of PP at pH 3.0 and Caseinolytic activity 2 remained stable up to 50 C. The pre-treatment of milk at 70 C resulted in highest clotting activity. Flowers ° ° Milk-clotting Enzyme assays in presence of protease inhibitors indicated the presence of aspartic, cysteine, serine Moringa oleifera and metallo proteases. Aspartic proteases appear to be the main enzymes involved in milk-clotting activ- Plant rennet ity. PP promoted extensive cleavage of j-casein and low level of as- and b-caseins hydrolysis. The milk- Protease clotting activity indicates the application of M. oleifera flowers in dairy industry. Ó 2012 Elsevier Ltd. Open access under the Elsevier OA license. 1. Introduction tives in the search for enzymes from microorganisms and plants (Ahmed, Morishima, Babiker, & Mori, 2009; Barbano & Rasmussen, Plant proteases, enzymes that catalyse the hydrolysis of peptide 1992; Cavalcanti, Teixeira, Lima Filho, & Porto, 2004; Shieh, Thi, & bonds, participate in several biological processes, including mobi- Shih, 2009). lisation of storage proteins, degradation of light-damaged chloro- An early study showed that the cheese produced using extract plast proteins, defense against phytopathogen attack, tissue from Calotropis procera leaves was harder, less cohesive and gum- differentiation, and floral senescence (Estelle, 2001). Different mier than that obtained using acidic pH as clotting agent (Aworh & industrial processes utilise proteases such as papain, bromelain, Muller, 1987). Bruno, Lazza, Errasti, López, Caffini, and Pardo and ficin, and new enzymes with appealing physicochemical prop- (2010) reported that the cheese produced using extract from Brom- erties have been investigated for that purpose (Feijoo-Siota & Villa, elia hieronymi fruits was acceptable in appearance, body, texture, 2001). and flavour. The Albizia julibrissin seed extract was also used as Clotting of milk is a result of the action of proteases that desta- milk-clotting agent, and the resulting cheese did not develop bit- bilize casein micelles, which are particles present in fresh milk dis- terness after three months of ripening (Otani, Matsumori, & Hoso- persed in a continuous phase comprising water, salt, lactose and no, 1991). Extract from Cynara cardunculus flowers containing whey proteins (Kruif, 1999). The caseins as and b are localised proteases (cyprosins) is traditionally used in artisanal production within the micelle, whose structure is maintained in solution by of cheeses, and the recombinant form of cyprosin B is available the j-casein hydrophilic domain (Lo Piero, Puglisi, & Petrone, for large-scale use (Sampaio, Fortes, Cabral, Pais, & Fonseca, 2008). 2002). The hydrolysis of j-casein results in the collapse of micelles Milk-clotting activities from plant preparations have been asso- and exposure of as- and b-caseins to calcium, leading to separation ciated with serine and aspartic proteases. A serine protease of Cuc- of milk into a solid (clot or curd) and liquid (whey) phases (Abreu, umis melo fruit exhibited a more stable milk-clotting activity, when 2005). compared to that of papain (Uchikoba & Kaneda, 1996). Addition- In cheese production, milk-clotting by calf rennet is the proce- ally, it has been reported that a serine protease from Lactuca sativa dure most commonly used. However, the low supply of calf rennet leaves promoted clotting of skim milk as well as of milk with and the incidence of bovine spongiform encephalopathy are incen- different fat contents (Lo Piero et al., 2002; Uchikoba & Kaneda, 1996). Aspartic protease from Oryza sativa seeds promoted ⇑ Corresponding author. Tel.: +55 8121268540; fax: +55 8121268576. cleavage of j-casein, in a pattern similar to that obtained with E-mail address: [email protected] (P.M.G. Paiva). chymosin and pepsin (Asakura, Watanabe, Abe, & Arai, 1997), 1 These authors equally contributed to this study and aspartic proteases from extract of Silybum marianum flowers 0308-8146 Ó 2012 Elsevier Ltd. Open access under the Elsevier OA license. http://dx.doi.org/10.1016/j.foodchem.2012.06.087 E.V. Pontual et al. / Food Chemistry 135 (2012) 1848–1854 1849 hydrolysed caprine and ovine milk caseins (Cavalli, Silva, Cimino, proceed at 37 °C. Aliquots of 10 and 900 ll from the reaction mix- Malcata, & Priolo, 2008). tures were retrieved within 10, 30, 60, 120 min and 24 h of incuba- Flowers of Moringa oleifera (Moringaceae family) are rich in cal- tion. The aliquots of 10 ll were heated at 100 °C for 5 min and cium, potassium and antioxidants (a and c-tocopherol), and are submitted to SDS–PAGE as described in Section 2.5. The aliquots used in human diet, mainly in the Philippines (Makkar & Becker, of 900 ll were evaluated for absorbance at 366 nm after addition 1996; Ramachandran, Peter, & Gopalakrishnan, 1980; Sánchez- of 10% (w/v) trichloroacetic acid (200 ll) and centrifugation Machado, López-Cervantes, & Vázquez, 2006). This work reports (9,000 g, 10 min, 4 °C). One unit of caseinolytic activity was defined the detection in M. oleifera flowers of caseinolytic and milk-clotting as the amount of enzyme that promoted a 0.01 increase in absor- activities using azocasein and skim milk as substrates, respectively. bance. Chymosin (50 ll, 10 lg; Chy-MaxÒ Liquid, Chr. Hansen, The effects of pH, temperature and protease inhibitors on these en- Denmark) and 0.15 M NaCl were used as positive and negative con- zyme activities are also reported. Additionally, the caseinolytic and trols, respectively. milk-clotting activities were assayed using as-, b- and j-caseins or heated skim milk as substrates, respectively. 2.5. Polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate (SDS–PAGE) 2. Materials and methods Hydrolysis of as-, b-orj-caseins by PP and chymosin (positive 2.1. Plant material control) were evaluated by SDS–PAGE using 15% (w/v) polyacryl- amide gels (Laemmli, 1970). Aliquots (10 ll) from reaction mix- M. oleifera Lam. (Eudicots, Eurosids II, Order Brassicales, Family tures described in the Section 2.4, and molecular mass markers Moringaceae) has the vernacular names ‘‘moringa’’ in Portuguese, (SigmaMarker™ kit from Sigma–Aldrich, USA, containing the stan- ‘‘árbol del ben’’ in Spanish and horseradish tree in English. Flowers dard proteins: bovine serum albumin, 66,000 Da; glutamic dehy- were collected in Recife City, State of Pernambuco, northeastern drogenase from bovine liver, 55,000 Da; ovalbumin from chicken Brazil. A voucher specimen is archived under number 73,345 at egg, 45,000 Da,; glyceraldehyde 3-phosphate dehydrogenase from the herbarium Dárdano de Andrade Lima (Instituto Agronômico rabbit muscle, 36,000 Da; carbonic anhydrase from bovine erythro- de Pernambuco, Recife, Brazil). The flowers were detached from cytes, 29,000 Da; trypsinogen from bovine pancreas, 24,000 Da; trypsin inhibitor from soybean, 20,000 Da; -lactalbumin from bo- the inflorescence rachis at the pedicel and dried at 27 ± 2 °C, rela- a tive humidity of 70 ± 5%, for 7 days before use. The extraction pro- vine milk, 14,200 Da; and aprotinin from bovine lung, 6,500 Da) cedure is described below. were applied on gel. After running and staining with 0.02% (v/v) Coomassie Brilliant Blue in 10% acetic acid, the gels were dehy- drated and scanned. The densitograms were obtained using the 2.2. M. oleifera flower preparations software Scion Image Beta 4.02.2 (Scion Corporation, Frederick, MD, USA) and indicated the intensity of polypeptide bands. Powder (20 mesh) of M. oleifera dried flowers (50 g) was sus- pended in 0.15 M NaCl (500 ml) and homogenised in magnetic stir- 2.6. Milk-clotting activity rer (4 h at 4 °C). After filtration through gauze and centrifugation (9,000 g, 15 min, 4 °C), the flower extract (clear supernatant) was The substrate (10% skim milk, MolicoÒ, Nestlé, Brazil) was pre- treated with ammonium sulphate at 60% saturation (Green & pared in distilled water or in 10 mM CaCl2 in water, and pH was ad- Hughes, 1955). The precipitated protein fraction (PP) collected by justed at 6.5. The milk (2.0 ml) was incubated with flower extract centrifugation and the 60% supernatant fraction were dialysed (0.3 ml, 9.0 mg of protein), PP (0.3 ml, 9.8 mg of protein) or 60% (10 ml; 3.5 kDa cut-off membrane) against distilled water (4 h) supernatant fraction (0.3 ml, 9.0 mg of protein) at 37 °C, and curd and 0.15 M NaCl (2 h) using a volume of 2 L for dialysis fluid. formation was observed. The end point was recorded when the full separation between whey and curd was observed.
Recommended publications
  • Chymotrypsin-Like Peptidases in Insects
    Chymotrypsin-like peptidases in insects Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Fachbereich Biologie/Chemie der Universität Osnabrück vorgelegt von Gunnar Bröhan Osnabrück, Mai 2010 TABLE OF CONTENTS I Table of contents 1. Introduction 1 1.1. Serine endopeptidases 1 1.2. The structure of S1A chymotrypsin-like peptidases 2 1.3. Catalytic mechanism of chymotrypsin-like peptidases 6 1.4. Insect chymotrypsin-like peptidases 9 1.4.1. Chymotrypsin-like peptidases in insect immunity 9 1.4.2. Role of chymotrypsin-like peptidases in digestion 14 1.4.3. Involvement of chymotrypsin-like peptidases in molt 16 1.5. Objective of the work 18 2. Material and Methods 20 2.1. Material 20 2.1.1. Culture Media 20 2.1.2. Insects 20 2.2. Molecular biological methods 20 2.2.1. Tissue preparations for total RNA isolation 20 2.2.2. Total RNA isolation 21 2.2.3. Reverse transcription 21 2.2.4. Quantification of nucleic acids 21 2.2.5. Chemical competent Escherichia coli 21 2.2.6. Ligation and transformation in E. coli 21 2.2.7. Preparation of plasmid DNA 22 2.2.8. Restriction enzyme digestion of DNA 22 2.2.9. DNA gel-electrophoresis and DNA isolation 22 2.2.10. Polymerase-chain-reaction based methods 23 2.2.10.1. RACE-PCR 23 2.2.10.2. Quantitative Realtime PCR 23 2.2.10.3. Megaprimer PCR 24 2.2.11. Cloning of insect CTLPs 25 2.2.12. Syntheses of Digoxigenin-labeled DNA and RNA probes 26 2.2.13.
    [Show full text]
  • Concentration of Tissue Angiotensin II Increases with Severity of Experimental Pancreatitis
    MOLECULAR MEDICINE REPORTS 8: 335-338, 2013 Concentration of tissue angiotensin II increases with severity of experimental pancreatitis HIROYUKI FURUKAWA1, ATSUSHI SHINMURA1, HIDEHIRO TAJIMA1, TOMOYA TSUKADA1, SHIN-ICHI NAKANUMA1, KOICHI OKAMOTO1, SEISHO SAKAI1, ISAMU MAKINO1, KEISHI NAKAMURA1, HIRONORI HAYASHI1, KATSUNOBU OYAMA1, MASAFUMI INOKUCHI1, HISATOSHI NAKAGAWARA1, TOMOHARU MIYASHITA1, HIDETO FUJITA1, HIROYUKI TAKAMURA1, ITASU NINOMIYA1; HIROHISA KITAGAWA1, SACHIO FUSHIDA1, TAKASHI FUJIMURA1, TETSUO OHTA1, TOMOHIKO WAKAYAMA2 and SHOICHI ISEKI2 1Department of Gastroenterological Surgery, Division of Cancer Medicine; 2Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan Received January 23, 2013; Accepted May 30, 2013 DOI: 10.3892/mmr.2013.1509 Abstract. Necrotizing pancreatitis is a serious condition that Introduction is associated with high morbidity and mortality. Although vasospasm is reportedly involved in necrotizing pancreatitis, Acute pancreatitis, particularly the necrotizing type, is the underlying mechanism is not completely clear. In addition, associated with high morbidity and mortality. Necrotizing the local renin-angiotensin system has been hypothesized to pancreatitis is characterized by parenchymal non-enhance- be involved in the progression of pancreatitis and trypsin has ment on contrast-enhanced computed tomography images (1). been shown to generate angiotensin II under weakly acidic Although necrosis is irreversible, certain patients exhibiting conditions. However, to the best of our knowledge, no studies this pancreatic parenchymal non-enhancement recover have reported elevated angiotensin II levels in tissue with with normal pancreatic conditions (2). Vasospasm has been pancreatitis. In the present study, the concentration of pancre- implicated in the development of pancreatic ischemia and atic angiotensin II in rats with experimentally induced acute necrosis (3); however, the precise underlying mechanism is pancreatitis was measured.
    [Show full text]
  • In Escherichia Coli (Synthetic Oligonucleotide/Gene Expression/Industrial Enzyme) J
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 3671-3675, June 1983 Biochemistry Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme) J. S. EMTAGE*, S. ANGALt, M. T. DOELt, T. J. R. HARRISt, B. JENKINS*, G. LILLEYt, AND P. A. LOWEt Departments of *Molecular Genetics, tMolecular Biology, and tFermentation Development, Celltech Limited, 250 Bath Road, Slough SL1 4DY, Berkshire, United Kingdom Communicated by Sydney Brenner, March 23, 1983 ABSTRACT A gene for calf prochymosin (prorennin) has been maturation conditions and remained insoluble on neutraliza- reconstructed from chemically synthesized oligodeoxyribonucleo- tion, it was possible that purification as well as activation could tides and cloned DNA copies of preprochymosin mRNA. This gene be achieved. has been inserted into a bacterial expression plasmid containing We describe here the construction of E. coli plasmids de- the Escherichia coli tryptophan promoter and a bacterial ribo- signed to express the prochymosin gene from the trp promoter some binding site. Induction oftranscription from the tryptophan and the isolation and conversion of this prochymosin to en- promoter results in prochymosin synthesis at a level of up to 5% active of total protein. The enzyme has been purified from bacteria by zymatically chymosin. extraction with urea and chromatography on DEAE-celiulose and MATERIALS AND METHODS converted to enzymatically active chymosin by acidification and neutralization. Bacterially produced chymosin is as effective in Materials. DNase I, pepstatin A, and phenylmethylsulfonyl clotting milk as the natural enzyme isolated from calf stomach. fluoride were obtained from Sigma. Calf prochymosin (Mr 40,431) and chymosin (Mr 35,612) were purified from stomachs Chymosin (rennin) is an aspartyl proteinase found in the fourth from 1-day-old calves (1).
    [Show full text]
  • From Renin- Secreting Tumors of Nonrenal Origin
    Characterization of inactive renin ("prorenin") from renin- secreting tumors of nonrenal origin. Similarity to inactive renin from kidney and normal plasma. S A Atlas, … , M C Ruddy, M Aurell J Clin Invest. 1984;73(2):437-447. https://doi.org/10.1172/JCI111230. Research Article Inactive renin comprises well over half the total renin in normal human plasma. There is a direct relationship between active and inactive renin levels in normal and hypertensive populations, but the proportion of inactive renin varies inversely with the active renin level; as much as 98% of plasma renin is inactive in patients with low renin, whereas the proportion is consistently lower (usually 20-60%) in high-renin states. Two hypertensive patients with proven renin- secreting carcinomas of non-renal origin (pancreas and ovary) had high plasma active renin (119 and 138 ng/h per ml) and the highest inactive renin levels we have ever observed (5,200 and 14,300 ng/h per ml; normal range 3-50). The proportion of inactive renin (98-99%) far exceeded that found in other patients with high active renin levels. A third hypertensive patient with a probable renin-secreting ovarian carcinoma exhibited a similar pattern. Inactive renins isolated from plasma and tumors of these patients were biochemically similar to semipurified inactive renins from normal plasma or cadaver kidney. All were bound by Cibacron Blue-agarose, were not retained by pepstatin-Sepharose, and had greater apparent molecular weights (Mr) than the corresponding active forms. Plasma and tumor inactive renins from the three patients were similar in size (Mr 52,000-54,000), whereas normal plasma inactive renin had a slightly larger Mr than that from kidney (56,000 vs.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • John H. Northrop
    J OHN H . N ORTHROP T h e preparation of pure enzymes and virus proteins* Nobel Lecture, December 12, 1946 The problem of the chemical nature of the substances which control the reactions occurring in living cells has been a subject of research, and also of controversy, for nearly two hundred years. Before the eighteenth century these reactions were considered as "vital processes", outside the realm of experimental science. The work of Spallanzani, Payen and Persoz, Schwann, Kühne, and finally Buchner proved that many of these reactions could take place without living cells and were probably caused by the presence of small amounts of unstable and active substances, which Kühne called "enzymes". Berzelius, a century ago, pointed out that these enzymes were similar to the catalysts of the chemist and suggested that they be considered as special catalysts formed by the cells. This hypothesis was far ahead of its time and met with great opposition, since many workers considered that enzyme reac- tions differed qualitatively from ordinary chemical reactions. The work of Tamman, Arrhenius, Henri, Michaelis, Nelson, von Euler, Willstätter, War- burg, and other chemists, however, has shown that Berzelius’ viewpoint was correct and enzyme reactions are now considered a special kind of catalysis which does not differ qualitatively from other catalytic reactions. While the study of enzyme reactions made rapid progress all attempts to isolate an enzyme and so determine its chemical nature were unsuccessful until recently. The early workers were of the opinion that enzymes were probably pro- teins and in 1896 Pekelharing isolated a protein from gastric juice which he considered to be the enzyme pepsin.
    [Show full text]
  • Trypsinogen Isoforms in the Ferret Pancreas Eszter Hegyi & Miklós Sahin-Tóth
    www.nature.com/scientificreports OPEN Trypsinogen isoforms in the ferret pancreas Eszter Hegyi & Miklós Sahin-Tóth The domestic ferret (Mustela putorius furo) recently emerged as a novel model for human pancreatic Received: 29 June 2018 diseases. To investigate whether the ferret would be appropriate to study hereditary pancreatitis Accepted: 25 September 2018 associated with increased trypsinogen autoactivation, we purifed and cloned the trypsinogen isoforms Published: xx xx xxxx from the ferret pancreas and studied their functional properties. We found two highly expressed isoforms, anionic and cationic trypsinogen. When compared to human cationic trypsinogen (PRSS1), ferret anionic trypsinogen autoactivated only in the presence of high calcium concentrations but not in millimolar calcium, which prevails in the secretory pathway. Ferret cationic trypsinogen was completely defective in autoactivation under all conditions tested. However, both isoforms were readily activated by enteropeptidase and cathepsin B. We conclude that ferret trypsinogens do not autoactivate as their human paralogs and cannot be used to model the efects of trypsinogen mutations associated with human hereditary pancreatitis. Intra-pancreatic trypsinogen activation by cathepsin B can occur in ferrets, which might trigger pancreatitis even in the absence of trypsinogen autoactivation. Te digestive protease precursor trypsinogen is synthesized and secreted by the pancreas to the duodenum where it becomes activated to trypsin1. Te activation process involves limited proteolysis of the trypsinogen activation peptide by enteropeptidase, a brush-border serine protease specialized for this sole purpose. Te activation peptide is typically an eight amino-acid long N-terminal sequence, which contains a characteristic tetra-aspartate motif preceding the activation site peptide bond, which corresponds to Lys23-Ile24 in human trypsinogens.
    [Show full text]
  • Role of the Amino Terminus in Intracellular Protein Targeting to Secretory Granules Teresa L
    In Vitro Mutagenesis of Trypsinogen: Role of the Amino Terminus in Intracellular Protein Targeting to Secretory Granules Teresa L. Burgess,* Charles S. Craik,** Linda Matsuuchi,* and Regis B. Kelly* * Department of Biochemistry and Biophysics, and *Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 Abstract. The mouse anterior pituitary tumor cell expressed in AtT-20 cells to determine whether intra- line, AtT-20, targets secretory proteins into two distinct cellular targeting could be altered. Replacing the tryp- intracellular pathways. When the DNA that encodes sinogen signal peptide with that of the kappa-immu- trypsinogen is introduced into AtT-20 cells, the protein noglobulin light chain, a constitutively secreted is sorted into the regulated secretory pathway as protein, does not alter targeting to the regulated secre- efficiently as the endogenous peptide hormone ACq'H. tory pathway. In addition, deletion of the NH2-terminal In this study we have used double-label immunoelec- "pro" sequence of trypsinogen has virtually no effect tron microscopy to demonstrate that trypsinogen on protein targeting. However, this deletion does affect colocalizes in the same secretory granules as ACTH. the signal peptidase cleavage site, and as a result the In vitro mutagenesis was used to test whether the in- enzymatic activity of the truncated trypsin protein is formation for targeting trypsinogen m the secretory abolished. We conclude that neither the signal peptide granules resides at the amino (NH2) terminus of the nor the 12 NH2-terminal amino acids of trypsinogen protein. Mutations were made in the DNA that en- are essential for sorting to the regulated secretory codes trypsinogen, and the mutant proteins were pathway of AtT-20 cells.
    [Show full text]
  • (Enterokinase), Active EK
    Catalog # Aliquot Size E535-31H-5 5 ug E535-31H-10 10 µg E535-31H-100 100 µg E535-31H-500 500 µg EK (enterokinase), Active Recombinant swine protein expressed in yeast cells Catalog # E535-31H Lot # L2146-3 Product Description Purity Recombinant swine EK (800-end) was expressed in yeast cells using an N-terminal His tag. The enzyme commission number is EC 3.4.21.9. The purity of EK (enterokinase) Gene Aliases was determined to be >85% by densitometry, approx. MW Enteropeptidase; TMPRSS15; PRSS7; Serine protease 7; 44kDa. ENTK; MGC133046. Formulation Recombinant protein stored in 50mM Tris-HCl, pH 8, 200mM Specific Activity NaCl, 30% glycerol. The specific activity of EK was determined to be Storage and Stability >10,000 units/mg as per the activity assay protocol. Store product at –20oC for up to 1 year. Aliquot enzymes Sample Data: to avoid freeze / thaw cycles. Digestion Conditions Catalytic pH Range: 4.5 ~ 9.5 Catalytic Temperature Range: 4 ~ 45oC Scientific Background Enterokinase (EK) is a member of the trypsin family of serine proteases, which cleaves proteins following the Lys at the HPLC results for digestion of the parathyroid hormone - maltose Asp-Asp-Asp-Asp-Lys recognition sequence. In the binding protein (MBP-PTH) fusion protein by Enterokinase at an stomach, EK converts trypsinogen into trypsin. EK has high enzyme : substrate mass ratio of 1:250 for 8 hr at 25oC. The specificity and high hydrolytic efficiency, making it a digestion products are: PTH and MBP. widely used biochemical tool for cleaving recombinant fusion proteins. EK can tolerate a variety of detergents and some denaturing agents.
    [Show full text]
  • Arabidopsis Thaliana Atypical Aspartic Proteases Involved in Primary Root Development and Lateral Root Formation
    André Filipe Marques Soares RLR1 and RLR2, two novel Arabidopsis thaliana atypical aspartic proteases involved in primary root development and lateral root formation 2016 Thesis submitted to the Institute for Interdisciplinary Research of the University of Coimbra to apply for the degree of Doctor in Philosophy in the area of Experimental Biology and Biomedicine, specialization in Molecular, Cell and Developmental Biology This work was conducted at the Center for Neuroscience and Cell Biology (CNC) of University of Coimbra and at Biocant - Technology Transfer Association, under the scientific supervision of Doctor Isaura Simões and at the Department of Biochemistry of University of Massachusetts, Amherst, under the scientific supervision of Doctor Alice Y. Cheung. Part of this work was also performed at the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, under the scientific supervision of Doctor Herta Steinkellner and also at the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, under the schientific supervision of Doctor Pitter F. Huesgen. André Filipe Marques Soares was a student of the Doctoral Programme in Experimental Biology and Biomedicine coordinated by the Center for Neuroscience and Cell Biology (CNC) of the University of Coimbra and a recipient of the fellowship SFRH/BD/51676/2011 from the Portuguese Foundation for Science and Technology (FCT). The execution of this work was supported by a PPP grant of the German Academic Exchange Service with funding from the Federal Ministry of Education and Research (Project-ID 57128819 to PFH) and the Fundação para a Ciência e a Tecnologia (FCT) (grant: Scientific and Technological Bilateral Agreement 2015/2016 to IS) Agradecimentos/Acknowledgments Esta tese e todo o percurso que culminou na sua escrita não teriam sido possíveis sem o apoio, o carinho e a amizade de várias pessoas que ainda estão ou estiveram presentes na minha vida.
    [Show full text]
  • | Hai Lama Dia Tetan on a Dan Ta
    |HAI LAMA DIA TETANUS010087247B2 ON A DAN TA (12 ) United States Patent ( 10 ) Patent No. : US 10 ,087 ,247 B2 Heartlein et al. ( 45) Date of Patent : Oct . 2 , 2018 ( 54 ) METHODS AND COMPOSITIONS FOR 6 , 534 , 484 B1 3 / 2003 Wheeler et al. 6 , 815, 432 B2 11/ 2004 Wheeler et al . DELIVERING MRNA CODED ANTIBODIES 7 , 422 ,902 B1 9 / 2008 Wheeler et al . 7 , 745 , 651 B2 6 / 2010 Heyes et al . (71 ) Applicant : TRANSLATE BIO , INC ., Cambridge , 7 , 799 , 565 B2 9 / 2010 MacLachlan et al . MA (US ) 7 , 803 , 397 B2 9 /2010 Heyes et al. 7 , 901 , 708 B2 3 / 2011 MacLachlan et al. (72 ) Inventors : Michael Heartlein , Cambridge , MA 8 , 101 , 741 B2 1 /2012 MacLachlan et al . (US ) ; Frank Derosa , Cambridge , MA 8 ,188 , 263 B2 5 / 2012 MacLachlan et al. 8 , 236 , 943 B2 8 / 2012 Lee et al. ( US ) ; Anusha Dias , Cambridge , MA 8 , 329, 070 B2 12 / 2012 MacLachlan et al. (US ) ; Braydon Charles Guild , 8 , 513 , 403 B2 8 / 2013 MacLachlan et al. Concord , MA (US ) 8 ,569 , 256 B2 10 /2013 Heyes et al. 8 , 710 , 200 B2 4 /2014 Schrum et al . 8 , 822 , 663 B2 9 /2014 Schrum et al . @(73 ) Assignee : Translate Bio , Inc ., Lexington , MA 8 , 883 , 202 B2 11/ 2014 Manoharan et al . (US ) 8 ,980 , 864 B2 3 /2015 Hoge et al. 9 , 051 , 567 B2 6 / 2015 Fitzgerald et al. @( * ) Notice : Subject to any disclaimer, the term of this 9 , 061 , 059 B2 6 / 2015 Chakraborty et al. patent is extended or adjusted under 35 9 , 089 , 604 B2 7 / 2015 Chakraborty et al.
    [Show full text]
  • Human Trypsinogens in the Pancreas and in Cancer
    HUMAN TRYPSINOGENS IN THE PANCREAS AND IN CANCER Outi Itkonen Department of Clinical Chemistry, University of Helsinki and Hospital District of Helsinki and Uusimaa - HUSLAB Helsinki, Finland ACADEMIC DISSERTATION To be presented, with the permission of the Medical Faculty of the University of Helsinki, for public criticism in lecture room I, Meilahti Hospital, Haartmaninkatu 4, Helsinki on September 12th at noon. Helsinki 2008 Supervised by Professor Ulf-Håkan Stenman Department of Clinical Chemistry, University of Helsinki, Finland Revised by Docent Jouko Lohi Department of Pathology, University of Helsinki, Finland and Docent Olli Saksela Department of Dermatology, University of Helsinki, Finland Examined by Professor Kim Pettersson Department of Biotechnology, University of Turku, Finland ISBN 978-952-92-3963-4 (paperback) ISBN 978-952-10-4732-9 (pdf) http://ethesis.helsnki.fi Yliopistopaino Helsinki 2008 2 Contents Original publications 5 Abbreviations 6 Abstract 7 Review of the literature 8 Properties and biochemical characterization of human pancreatic trypsinogens 8 Extrapancreatic trypsinogen expression 12 Trypsinogen genes 13 Regulation of pancreatic trypsinogen gene expression and secretion 15 Regulation of gene expression 15 Regulation of secretion 16 Activation of trypsinogen to trypsin 17 Activation by enteropeptidase 17 Autoactivation 17 Activation by cathepsin B 17 Factors affecting trypsinogen activation 18 Trypsinogen and trypsin structure and mechanism of catalysis 20 Structure 20 Substrate binding 21 Catalysis 22 Functions
    [Show full text]