Isolation and Identification of Trichocomaceae from Soil by Morphology and Three Regions DNA Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of <I>Emericella</I> from Tibet, China
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/125.131 Volume 125, pp. 131–138 July–September 2013 A new species of Emericella from Tibet, China Li-chun Zhang1, 2 a*, Juan Chen2 , Wen-han Lin1 & Shun-xing Guo2 b* 1 The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100193, People’s Republic of China. 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People’s Republic of China * Correspondence to: a [email protected] & b [email protected]* Abstract — Emericella miraensis sp. nov. is described and illustrated. It was isolated from the alpine plant Polygonum macrophyllum var. stenophyllum from Tibet, China, and is characterized by ascospores with star-shaped equatorial crests. The new species is distinguished from other Emericella species with stellate ascospores (e.g., E. variecolor, E. astellata) by its violet ascospores and verrucose spore ornamentation. ITS and β-tubulin sequence analyses also support E. miraensis as a new species. Key words —Aspergillus, endophytic fungi, phylogeny, taxonomy Introduction Berkeley (1857) established Emericella, a teleomorph genus associated with Aspergillus, for the type species E. variecolor Berk. & Broome (Geiser 2009, Peterson 2012). To date, 36 species have been described and recorded worldwide (Kirk et al. 2008). Emericella species are usually isolated from soil (Samson & Mouchacca 1974, Horie et al. 1989, 1990, 1996, 1998, 2000; Stchigel & Guarro 1997) but sometimes also from stored foods, herbal drugs, and grains or occasionally from hypersaline water (Zalar et al. 2008) or living plants (Berbee 2001, Thongkantha et al. -
Diversity and Community of Culturable Endophytic Fungi from Stems and Roots of Desert Halophytes in Northwest China
A peer-reviewed open-access journal MycoKeys 62: 75–95 (2020) Culturable endophytic fungal of desert halophytes 75 doi: 10.3897/mycokeys.62.38923 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China Jia-Long Li1,2,3, Xiang Sun1,4, Yong Zheng5, Peng-Peng Lü1,3, Yong-Long Wang1,3, Liang-Dong Guo1,3 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 2 National Joint Engineering Research Center of Separation and purification technology of Chinese Ethnic Veterinary Herbs, Tongren Polytechnic College, Tongren, 554300, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China 4 Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel 5 School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China Corresponding authors: Xiang Sun ([email protected]); Liang-Dong Guo ([email protected]) Academic editor: P. Divakar | Received 10 August 2019 | Accepted 10 December 2019 | Published 3 February 2020 Citation: Li J-L, Sun X, Zheng Y, Lü P-P, Wang Y-L, Guo L-D (2020) Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 62: 75–95. https://doi. org/10.3897/mycokeys.62.38923 Abstract Halophytes have high species diversity and play important roles in ecosystems. However, endophytic fungi of halophytes in desert ecosystems have been less investigated. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result. -
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. -
Choosing One Name for Pleomorphic Fungi: the Example of Aspergillus Versus Eurotium, Neosartorya and Emericella John W
TAXON — 1 Jun 2016: 9 pp. Taylor & al. • Choosing names for Aspergillus and teleomorphs NOMENCLATURE Edited by Jefferson Prado, James Lendemer & Erin Tripp Choosing one name for pleomorphic fungi: The example of Aspergillus versus Eurotium, Neosartorya and Emericella John W. Taylor,1 Markus Göker2 & John I. Pitt3 1 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, U.S.A. 2 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany 3 CSIRO Food and Nutrition, North Ryde, New South Wales 2113, Australia Author for correspondence: John W. Taylor, [email protected] ORCID JWT, http://orcid.org/0000-0002-5794-7700; MG, http://orcid.org/0000-0002-5144-6200; JIP, http://orcid.org/0000-0002-6646-6829 DOI http://dx.doi.org/10.12705/653.10 Abstract With the termination of dual nomenclature, each fungus may have only one name. Now mycologists must choose between genus names formerly applied to taxa with either asexual or sexual reproductive modes, a choice that often influences the breadth of genotypic and phenotypic diversity in a genus, and even its monophyly. We use the asexual genus Aspergillus to examine the problems involved in such choices because (a) 11 sexual generic names are associated with it and (b) phenotypic variation and genetic divergence within sexual genera are low but between sexual genera are high. As a result, in the case of Aspergillus, applying the asexual name to the many sexual genera masks information now conveyed by the genus names and would lead to taxonomic inconsistency in the Eurotiales because this large Aspergillus would then embrace more genetic divergence than neighboring clades comprised of two or more genera. -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. -
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes of Eastern Canada by Joey B. Tanney A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2016 Abstract Research interest in endophytic fungi has increased substantially, yet is the current research paradigm capable of addressing fundamental taxonomic questions? More than half of the ca. 30,000 endophyte sequences accessioned into GenBank are unidentified to the family rank and this disparity grows every year. The problems with identifying endophytes are a lack of taxonomically informative morphological characters in vitro and a paucity of relevant DNA reference sequences. A study involving ca. 2,600 Picea endophyte cultures from the Acadian Forest Region in Eastern Canada sought to address these taxonomic issues with a combined approach involving molecular methods, classical taxonomy, and field work. It was hypothesized that foliar endophytes have complex life histories involving saprotrophic reproductive stages associated with the host foliage, alternative host substrates, or alternate hosts. Based on inferences from phylogenetic data, new field collections or herbarium specimens were sought to connect unidentifiable endophytes with identifiable material. Approximately 40 endophytes were connected with identifiable material, which resulted in the description of four novel genera and 21 novel species and substantial progress in endophyte taxonomy. Endophytes were connected with saprotrophs and exhibited reproductive stages on non-foliar tissues or different hosts. These results provide support for the foraging ascomycete hypothesis, postulating that for some fungi endophytism is a secondary life history strategy that facilitates persistence and dispersal in the absence of a primary host. -
The Isolation and Identification of Fungi from the Soil in Gardens of Cabbage Were Contaminated with Pesticide Residues in Subdistrict Modoinding
International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 4 Issue 7 ǁ July. 2016 ǁ PP. 25-32 The Isolation and Identification of Fungi from the Soil in Gardens of Cabbage Were Contaminated with Pesticide Residues in Subdistrict Modoinding Stella D. Umboh1), Christina L. Salaki2), Max Tulung2), Lucia C. Mandey2), And Redsway T.D. Maramis2) 1) Doctoral Student at the University of Sam Ratulangi, Manado, North Sulawesi, Indonesia. Mobile Phone: + 62- 81340091042. E-mail: [email protected] 2) Faculty of Agriculture, University of Sam Ratulangi, Manado, North Sulawesi Abstract: Application of pesticides in the garden cabbage can cause negative effects harmful to the environment and living things. The objectives of this research were to get species of fungi from the soil in the gardens of cabbage contaminated with pesticide residues in Subdistrict Modoinding. Isolation of fungi using dilution plate method with serial dilutions of 10-2 to 10-5 on Potato Dextrose Agar (PDA). Of the five soil treatments in the gardens of cabbage obtained 76 isolates of the fungus. Isolates of soil fungi that were successfully identified macroscopically and microscopically. These fungal isolates included in 13 families and 22 species. Fungal species according to the following families: Endomycetaceae (Geotrichum candidum), Trichocomaceae (Penicillium citrinum, Aspergillus fumigatus, Aspergillus nidulans, Paecilomyces lilacinus, Aspergillus foot cell, Aspergillus sydowii, Aspergillus flavus, Aspergillus terreus and Aspergillus niger), Sordariaceae (Chrysonilia sitophila), Mucoraceae (Mucor hiemalis), Pleurostomataceae (Pleurostmophora richardsiae), Hypocreaceae (Gliocladium virens), Pythiaceae (Phytophthora infestans), Chaetomiaceae (Humicola fuscoatra), Eremomycetaceae (Arthrographis cuboidea), incertae sedis (Scytalidium lignicola), Bionectriaceae (Gliocladium roseum) and Arthrodermataceae (Microsporum audouinii). -
Aspergillus and Penicillium Identification Using DNA Sequences: Barcode Or MLST?
Appl Microbiol Biotechnol (2012) 95:339–344 DOI 10.1007/s00253-012-4165-2 MINI-REVIEW Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Stephen W. Peterson Received: 28 March 2012 /Revised: 9 May 2012 /Accepted: 10 May 2012 /Published online: 27 May 2012 # Springer-Verlag (outside the USA) 2012 Abstract Current methods in DNA technology can detect several commodities. Aspergillus fumigatus, Aspergillus single nucleotide polymorphisms with measurable accuracy flavus, Aspergillus terreus (Walsh et al. 2011), and using several different approaches appropriate for different Talaromyces (syn. 0 Penicillium) marneffei (Sudjaritruk uses. If there are even single nucleotide differences that are et al. 2012) are recognized opportunistic pathogens of humans, invariant markers of the species, we can accomplish identifi- especially those with weakened immune systems. Aspergillus cation through rapid DNA-based tests. The question of whether niger is used for the production of enzymes and citric acid we can reliably detect and identify species of Aspergillus and (e.g., Dhillon et al. 2012), Aspergillus oryzae is used to pro- Penicillium turns mainly upon the completeness of our alpha duce soy sauce, Penicillium roqueforti ripens blue cheeses and taxonomy, our species concepts, and how well the available penicillin is produced by Penicillium chrysogenum (e.g., Xu et DNA data coincide with the taxonomic diversity in the family al. 2012). Heat-resistant Byssochlamys species can grow in Trichocomaceae. No single gene is yet known that is invariant pasteurized fruit juices (Sant’ana et al. 2010). These genera within species and variable between species as would be opti- along with a few others comprise the family Trichocomaceae. -
Supplementary Materials For
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supplementary materials for: Fungal community analysis in the seawater of the Mariana Trench as estimated by Illumina HiSeq Zhi-Peng Wang b, †, Zeng-Zhi Liu c, †, Yi-Lin Wang d, Wang-Hua Bi c, Lu Liu c, Hai-Ying Wang b, Yuan Zheng b, Lin-Lin Zhang e, Shu-Gang Hu e, Shan-Shan Xu c, *, Peng Zhang a, * 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China 2 Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China 3 School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. 4 College of Science, China University of Petroleum, Qingdao, Shandong 266580, China. 5 College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao, 266510, China. a These authors contributed equally to this work *Authors to whom correspondence should be addressed Supplementary Table S1. Read counts of OTUs in different sampled sites. OTUs M1.1 M1.2 M1.3 M1.4 M3.1 M3.2 M3.4 M4.2 M4.3 M4.4 M7.1 M7.2 M7.3 Total number OTU1 13714 398 5405 671 11604 3286 3452 349 3560 2537 383 2629 3203 51204 OTU2 6477 2203 2188 1048 2225 1722 235 1270 2564 5258 7149 7131 3606 43089 OTU3 165 39 13084 37 81 7 11 11 2 176 289 4 2102 16021 OTU4 642 4347 439 514 638 191 170 179 0 1969 570 678 0 10348 OTU5 28 13 4806 7 44 151 10 620 3