Choosing One Name for Pleomorphic Fungi: the Example of Aspergillus Versus Eurotium, Neosartorya and Emericella John W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of <I>Emericella</I> from Tibet, China
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/125.131 Volume 125, pp. 131–138 July–September 2013 A new species of Emericella from Tibet, China Li-chun Zhang1, 2 a*, Juan Chen2 , Wen-han Lin1 & Shun-xing Guo2 b* 1 The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100193, People’s Republic of China. 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People’s Republic of China * Correspondence to: a [email protected] & b [email protected]* Abstract — Emericella miraensis sp. nov. is described and illustrated. It was isolated from the alpine plant Polygonum macrophyllum var. stenophyllum from Tibet, China, and is characterized by ascospores with star-shaped equatorial crests. The new species is distinguished from other Emericella species with stellate ascospores (e.g., E. variecolor, E. astellata) by its violet ascospores and verrucose spore ornamentation. ITS and β-tubulin sequence analyses also support E. miraensis as a new species. Key words —Aspergillus, endophytic fungi, phylogeny, taxonomy Introduction Berkeley (1857) established Emericella, a teleomorph genus associated with Aspergillus, for the type species E. variecolor Berk. & Broome (Geiser 2009, Peterson 2012). To date, 36 species have been described and recorded worldwide (Kirk et al. 2008). Emericella species are usually isolated from soil (Samson & Mouchacca 1974, Horie et al. 1989, 1990, 1996, 1998, 2000; Stchigel & Guarro 1997) but sometimes also from stored foods, herbal drugs, and grains or occasionally from hypersaline water (Zalar et al. 2008) or living plants (Berbee 2001, Thongkantha et al. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
PDF, Also Known As Version of Record
Downloaded from orbit.dtu.dk on: Dec 18, 2017 Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles Kocsubé, S.; Perrone, G.; Magistà, D.; Houbraken, J.; Varga, J.; Szigeti, G.; Hubka, V.; Hong, S.-B.; Frisvad, Jens Christian; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2016.11.006 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kocsubé, S., Perrone, G., Magistà, D., Houbraken, J., Varga, J., Szigeti, G., ... Samson, R. A. (2016). Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles. Studies in Mycology, 85, 199-213. DOI: 10.1016/j.simyco.2016.11.006 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 85: 199–213. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles S. -
Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result. -
Diversity and Communities of Fungal Endophytes from Four Pi‐ Nus Species in Korea
Supplementary materials Diversity and communities of fungal endophytes from four Pi‐ nus species in Korea Soon Ok Rim 1, Mehwish Roy 1, Junhyun Jeon 1, Jake Adolf V. Montecillo 1, Soo‐Chul Park 2 and Hanhong Bae 1,* 1 Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea 2 Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Pyeongchang, Kangwon 25354, Republic of Korea * Correspondence: [email protected]; tel: 8253‐810‐3031 (office); Fax: 8253‐810‐4769 Keywords: host specificity; fungal endophyte; fungal diversity; pine trees Table S1. Characteristics and conditions of 18 sampling sites in Korea. Ka Ca Mg Precipitation Temperature Organic Available Available Geographic Loca‐ Latitude Longitude Altitude Tree Age Electrical Con‐ pine species (mm) (℃) pH Matter Phosphate Silicic acid tions (o) (o) (m) (years) (cmol+/kg) dictivity 2016 2016 (g/kg) (mg/kg) (mg/kg) Ansung (1R) 37.0744580 127.1119200 70 45 284 25.5 5.9 20.8 252.4 0.7 4.2 1.7 0.4 123.2 Seosan (2R) 36.8906971 126.4491716 60 45 295.6 25.2 6.1 22.3 336.6 1.1 6.6 2.4 1.1 75.9 Pinus rigida Jungeup (3R) 35.5521138 127.0191565 240 45 205.1 27.1 5.3 30.4 892.7 1.0 5.8 1.9 0.2 7.9 Yungyang(4R) 36.6061179 129.0885334 250 43 323.9 23 6.1 21.4 251.2 0.8 7.4 2.8 0.1 96.2 Jungeup (1D) 35.5565492 126.9866204 310 50 205.1 27.1 5.3 30.4 892.7 1.0 5.8 1.9 0.2 7.9 Jejudo (2D) 33.3737599 126.4716048 1030 40 98.6 27.4 5.3 50.6 591.7 1.2 4.6 1.8 1.7 0.0 Pinus densiflora Hoengseong (3D) 37.5098629 128.1603840 540 45 360.1 -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
Secondary Metabolites from Eurotium Species, Aspergillus Calidoustus and A
mycological research 113 (2009) 480–490 journal homepage: www.elsevier.com/locate/mycres Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities Gregory J. SLACKa, Eva PUNIANIa, Jens C. FRISVADb, Robert A. SAMSONc, J. David MILLERa,* aOttawa-Carleton Institute of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6 bDepartment of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark cCBS Fungal Biodiversity Centre, PO Box 85167, NL-3508 AD Utrecht, The Netherlands article info abstract Article history: As part of studies of metabolites from fungi common in the built environment in Canadian Received 22 July 2008 homes, we investigated metabolites from strains of three Eurotium species, namely Received in revised form E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally 26 November 2008 identified as Aspergillus ustus. The latter have been recently assigned as the new species Accepted 16 December 2008 A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin Published online 14 January 2009 B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metab- Corresponding Editor: olites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum Stephen W. Peterson produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in Keywords: E. amstelodami. This species also produced questin and neoechinulin E as minor metabo- Aspergillus insuetus lites. This is the first report of epiheveadride occurring as a natural product, and the first A. -
New Xerophilic Species of Penicillium from Soil
Journal of Fungi Article New Xerophilic Species of Penicillium from Soil Ernesto Rodríguez-Andrade, Alberto M. Stchigel * and José F. Cano-Lira Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, Reus, 43201 Tarragona, Spain; [email protected] (E.R.-A.); [email protected] (J.F.C.-L.) * Correspondence: [email protected]; Tel.: +34-977-75-9341 Abstract: Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitol- erans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic. -
Aspergillus, Its Sexual States and the New International Code of Nomenclature
Mycologia, 106(5), 2014, pp. 1051–1062. DOI: 10.3852/14–060 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Aspergillus, its sexual states and the new International Code of Nomenclature John I. Pitt names for their different asexual (anamorph) and CSIRO Animal, Food and Health Sciences, North Ryde, sexual (teleomorph) states. Among the changes NSW 2113, Australia described in the ICN are two aimed at guiding John W. Taylor1 mycologists as they choose one name from among Department of Plant and Microbial Biology, University the several possible asexual and sexual names. These of California, Berkeley, California 94720-3102 are reproduced below: ‘‘Art. 59.1 Note 2. Previous editions of this Code Abstract: The newly adopted International Code of provided for separate names for mitotic asexual Nomenclature for algae, fungi and plants (ICN) morphs (anamorphs) of certain pleomorphic fungi demands that dimorphic fungi, in particular those and required that the name applicable to the whole with both sexual and asexual names, now bear a single fungus be typified by a meiotic sexual morph name. Although priority is no longer associated with (teleomorph). Under the current Code, however, the mode of reproduction, the ICN requires justifica- all legitimate fungal names are treated equally for tion for choosing an asexual name over an existing the purposes of establishing priority, regardless of sexual one. The phylogenetic approach that made the life-history stage of the type (but see Art. 57.2; dual nomenclature for fungi obsolete can be used to see also Art. 14.13). help choose names for large groups of fungi that are ‘‘[Art.] 57.2. -
Incidence and Characterisation of Mycoviruses from Aspergillus Fumigatus
Incidence and characterisation of mycoviruses from Aspergillus fumigatus By: Atif Jamal A thesis submitted for the degree of Doctor of Philosophy and the Diploma of Membership of Imperial College The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author Department of Life Sciences Division of Biology Imperial College London Imperial College Road London, SW7 2AZ 1 Statement of Originality The material in this thesis has not been previously submitted for a degree in any university, and to the best of my knowledge contains no material previously published or written by another person except where due acknowledgement is made in the thesis itself. 2 For my Parents 3 Acknowledgments First of all I thank Almighty ALLAH, who gave me power to carry out the research. I am heartily thankful to my supervisor, Dr Robert Coutts, for his continuous support. His informed guidance, encouragement and support, from the preliminary to the concluding level, enabled me to develop an understanding of the subject and to complete my thesis work. His constructive criticism and comments during write-up is also highly commendable. I am also greatly indebted to Dr Elaine Bignell for the support she extended during the work related to Aspergillus fumigatus. Her patience and willingness to discuss the minutiae of the different obstacles I encountered while working were invaluable. I also extend my sincere gratitude to the members of my lab, namely, Dr Zisis Kozlakidis, Fiang Lang (Jackie) and especially Muhammad Faraz Bhatti for their support and company. -
The Chemistry and Biology of Fungal Meroterpenoids (2009-2019)
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020 Supplementary Materials S1: Detail information of individual fungal meroterpenoids newly discovered in 2009-2019 The Chemistry and Biology of Fungal Meroterpenoids (2009-2019) Minghua Jiang 1,3,†, Zhenger Wu 1,†, Lan Liu 1,2,3* and Senhua Chen 1,2,3,* 1. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. [email protected] (M.J.); [email protected] (Z.W.) 2. Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. 3. South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China. † These authors contributed equally to this work. * Correspondence: [email protected] (L.L.); [email protected] (S.C.); Tel.: +86-020- 84725459 1 CONTENTS 1. Introduction 1 2. Abbreviations 1 3. Triketide–terpenoids (98, 1-98) 4 3.1 Aspergillus sp. (30)................................................................................................................................................4 3.2 Colletotrichum sp. (4)............................................................................................................................................5 3.3 Emericella sp. (3) ..................................................................................................................................................6 3.4 Eurotium sp. (5).....................................................................................................................................................6 -
Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit.