The Endothelial Genomic Response to Chronic Hypoxia

Total Page:16

File Type:pdf, Size:1020Kb

Load more

CHAPTER 7 The endothelial genomic response to chronic hypoxia Robert E. Verloop1 Anton J. G. Horrevoets2 Marten A. Engelse1 Oscar L. Volger3 Sophie Nadaud4 Pieter Koolwijk1 Victor W.M. van Hinsbergh1 1Laboratory for Physiology and 2Department of Molecular Cell Biology and Immunolo- gy, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherland 3Department of Biochemistry, Academic Medical Center, Amsterdam, the Netherlands 4UPMC University Paris 06 and INSERM, UMR_S 525, F-75005, Pa- ris, France Abstract: Exposure of endothelial cells to hypoxia shifts their gene expression pattern to me- tabolically adjust to the change in oxygen tension. Little is known of the effects of chronic hypoxia on these cells as experienced during many pathological conditions, because only short-term hypoxia (up to 24 hours) has been investigated extensi- vely. Therefore, we studied human umbilical vein and microvascular endothelial cells under culture conditions that allowed continuous culture, inspection and medium renewal under defined oxygen tensions. Endothelial cells remained healthy and maintained their proliferation properties at 1% and 5% oxygen atmosphere com- parably or better than at 21% oxygen for up to 2 weeks. Microarray analysis of gene expressions revealed a significant regulation of 435 defined genes, grouped into 8 panels after these culture conditions. Pathway analysis showed hypoxia/HIF- dependent genes specifically regulated at 1% but not 5% oxygen, while the glyco- lysis pathway was well represented in the genes that displayed a gradual increase at lowering (5% and 1%) oxygen concentration. Surprisingly, comparison with five previously published microarray studies on short-term (24 hours) hypoxia-exposed endothelial cells showed substantial overlap in identity of the genes. Next, a panel of 55 genes selected from our results and published studies was studied in detail by Chapter 7 real-time (RT)-PCR in six additional cultures that were exposed for either 24 hours or 2 weeks to 1% oxygen. Most genes showed similar regulation by both acute and 196 chronic hypoxia, but tended to increase to higher levels after prolonged hypoxia. In- deed, only 8 out 55 genes, including PDH3, showed a significant difference between 24 hours and 2 weeks exposure. Still, the expression of HIF-1a and HIF-2a mRNA were suppressed after 2 weeks of hypoxia, but their cellular protein levels remained induced, whereas the potentially inhibitory HIF-3a/HIF-3a4 also markedly increased, suggesting additional complexity of HIF-1 regulation. One of the candidates for such additional regulation was identified as KLF2, as we observed a decrease of KLF2 mRNA and its direct targets like thrombomodulin and eNOS. In contrast, proinflam- matory and TGF-β responsive genes normally suppressed by KLF2 were markedly enhanced. These results identify HIF-1 as the most important transcription factor for chronic hypoxia, despite the complex adjustments in its regulatory circuit, and identify a novel interaction between KLF2 and HIF activity and their regulated genes. Endothelial Gene Expression During Chronic Hypoxia 197 Introduction Oxygen is required for proper functioning of tissues. It is delivered by the blood and replenished via the circulatory system that is lined by endothelial cells. When hypox- ia occurs, tissue cells switch to a change in metabolic activity and an altered gene expression pattern, which is largely determined by hypoxia inducible transcription factors (HIF) as well as by additional mechanisms1, 2. This results in reduced energy expenditure, enhanced glycolysis, and the production of factors, such as VEGF and erythropoietin, that help to restore vascularization and oxygen transfer. Being part of the circulation, the vascular endothelium is normally well oxygenated, and can respond to angiogenic factors produced by hypoxic tissues3, 4. However, after occlu- sion of a proximal vessel, by high local oxygen consumption e.g. in inflamed tissues or tumors, and in transplanted tissue, endothelial cells become part of a hypoxic environment. In such cases the endothelium has to maintain its survival and to alter its properties towards a phenotype that restores the circulation and blood supply, i.e. inducing vasodilation and participating in angiogenesis5, 6. This requires a change in gene expression, which may be dependent on the duration and severity of hypoxia. 7 Hypoxia is defined as insufficient delivery of O2 to meet the demands of the tissue . While normal tissues, such as resting skeletal muscles and heart, are exposed to a 4 - 6.5% O2 tension, the oxygen concentration of hypoxic regions is usually reduced 8-14 to 0.5-2% O2 , but can incidentally decrease to anoxic values . The lack of oxygen causes the immediate availability of HIF and induces several HIF-dependent and independent pathways that contribute to hypoxia tolerance 2, 15, 16. HIF are heterodi- meric transcription factors composed of a stable, constitutively expressed, HIF-1β (ARNT) subunit and a HIF-α protein, either HIF-1α or HIF-2α, which are negatively regulated by oxygen17, 18. HIF-1α is ubiquitously expressed, while HIF-2α, also called EPAS1, is encountered only in a limited number of cell types, including endothelial cells19-22. The HIF-α subunits are continuously synthesized. However, when oxygen is present, they are degraded after hydroxylation of specific proline residues by oxy- gen-sensitive prolyl hydroxylases (PHD), after which they bind to the von Hippel- Lindau protein and become degraded in the proteasome15, 23. An additional aspara- gine hydroxylation by factor-inhibiting hypoxia (FIH-1) prevents the formation of an active HIF-containing transcription complex. Conversely, in the absence of sufficient oxygen the HIF-a-subunits escape from hydroxylation and degradation and become able to bind as active HIF complexes to many hypoxia-responsive elements (HRE), thereby inducing a large number of different genes. Because of the central role of endothelial cells (EC) in angiogenesis, a number of groups have studied the genomic responses of EC to hypoxic exposure5, 24, 25. Mana- lo et al.5 selected genes that were both induced/reduced by hypoxia as well by HIF- 1a overexpression. On the other hand, Takeda et al. 26 selected hypoxia-responsive genes by evaluating overexpression of HIF-2a in EC. Other studies utilized chemical agents that induced a hypoxia-like response24, 25, 27. Each of the studies came with a different set of genes that only partially overlapped with one another. In addition a number of studies identified individual genes that were up- or downregulated in hypoxic or anoxic conditions, usually studied within a 24-hour period of time. Mostly due to technical limitations, to date studies have largely ignored the influ- ence of prolonged exposure to hypoxia on hypoxia-regulated gene expression. This is rather contradictory since disease conditions, like cancer, heart ischemia and chronic infection, are usually accompanied by prolonged hypoxia. Chaplin et al.28, was among the first who described the concepts of acute (short-term) and chronic (prolonged) hypoxia with relation to the radio-sensitivity of specific areas of human tumors exposed for various durations of hypoxia. Although HIF-regulated genes mediate crucial beneficial short-term biological adaptations, a limited number Chapter 7 of papers have demonstrated adverse effects of a fully active HIF system during prolonged hypoxia29, 30. Ginouvès et al.31 made a detailed analysis of the HIF system 198 and demonstrated that chronic hypoxia induced HIF-1α and -2α desensitization in vitro and in vivo. This was accomplished by increasing the abundance and activity of the PHD. These feedback mechanisms31, 32 aimed to protect cells against necrotic cell death and thus to adapt them to chronic hypoxia. In addition it also prepares the system for a rapid response to an acute more severe hypoxic stimulus33. This may underlie the recent observation that much higher concentrations of HIF-1a, VEGF and SDF-1 were present in tissue sections of human ischemic legs after acute-on- chronic hypoxia than in chronically hypoxic legs34. Because of the lack of data on chronic hypoxic exposure we made a detailed ge- nomic analysis of human endothelial cells subjected to short and prolonged periods of hypoxia (1% O2), normoxia (5% O2), and hyperoxia (21% O2), which is the stan- dard culture condition. We focused on the expression of angiogenesis-regulating genes to determine whether endothelial cells are capable of initiating this essential survival pathway during chronic hypoxia. Endothelial Gene Expression During Chronic Hypoxia 199 Materials and Methods Materials Medium 199 (M199), penicillin/streptomycin, Hank’s balanced salt solution (HBSS) and trypsin were purchased from Lonza (Basel, Switzerland). Tissue culture plastics were from Corning Life Sciences (Lowell, MA, USA) and Greiner Bio-One (Krem- smünster, Austria). Heparin was from Leo Pharmaceutical Products (Weesp, The Netherlands). A crude extract of endothelial cell growth factor (ECGF) was isolated from bovine brain as described by Maciag et al.35. Newborn calf serum (NBCS) was obtained from Invitrogen (Carlsbad, CA, USA). For HUVEC culture, human serum was purchased from the local blood bank (Sanquin Blood Supply Foundation, Am- sterdam, The Netherlands) and was prepared from at least 20 healthy donors (after informed consent). hMVEC were cultured in human serum from PAA Laboratories (Pasching, Austria); both sera were heat-inactivated
Recommended publications
  • Supplementary Information

    Supplementary Information

    doi: 10.1038/nature08795 SUPPLEMENTARY INFORMATION Supplementary Discussion Population naming In some contexts, the indigenous hunter-gatherer and pastoralist peoples of southern Africa are referred to collectively as the Khoisan (Khoi-San) or more recently Khoesan (Khoe-San) people. This grouping is based on the unique linguistic use of click-consonants1. Many names, often country-specific, have been used by Bantu pastoralists and European settlers to describe the hunter-gatherers, including San, Saan, Sonqua, Soaqua, Souqua, Sanqua, Kwankhala, Basarwa, Batwa, Abathwa, Baroa, Bushmen, Bossiesmans, Bosjemans, or Bosquimanos. In addition, group-specific names such as !Kung and Khwe are often used for the broader population. The two most commonly used names, “San” and “Bushmen”, have both been associated with much controversy due to derogatory connotations2. “San” has become the more popular term used in Western literature, although “Bushmen” is arguably the more commonly recognized term within the communities. Since they have no collective name for themselves, the term Bushmen was selected for use in this paper as the term most familiar to the participants themselves. Regarding identification of individuals The five men identified in this study have all elected to have their identity made public knowledge. Thus we present two complete personal genomes (KB1 and ABT), a low-coverage personal genome (NB1), and personal exomes for all five men. On a scientific level, identification allows for current and future correlation of genetic data with demographic and medical histories. On a social level, identification allows for maximizing community benefit. For !Gubi, G/aq’o, D#kgao and !Aî, their name represents not only themselves, but importantly their extended family unit and a way of life severely under threat.
  • KO Kidney.Xlsx

    KO Kidney.Xlsx

    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model

    Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model

    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
  • IMPDH2: a New Gene Associated with Dominant Juvenile-Onset Dystonia-Tremor Disorder

    IMPDH2: a New Gene Associated with Dominant Juvenile-Onset Dystonia-Tremor Disorder

    www.nature.com/ejhg BRIEF COMMUNICATION OPEN IMPDH2: a new gene associated with dominant juvenile-onset dystonia-tremor disorder 1,8 1,8 2 3 1,4 2 5 Anna Kuukasjärvi , Juan✉ C. Landoni , Jyrki Kaukonen , Mika Juhakoski , Mari Auranen , Tommi Torkkeli , Vidya Velagapudi and Anu Suomalainen 1,6,7 © The Author(s) 2021 The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenasegene(IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia. European Journal of Human Genetics; https://doi.org/10.1038/s41431-021-00939-1 INTRODUCTION The disease-onset was between 9 and 20 years of age. Table 1 Dystonias are rare movement disorders characterised by sustained or summarises the clinical presentations. intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Dystonia can manifest as an isolated Case report symptom or combined with e.g. parkinsonism or myoclonus [1]. While Patient II-6 is a 46-year-old woman.
  • Nus a Thesis Submitted

    Nus a Thesis Submitted

    EPAS1 REGULATION AND FUNCTION IN THE HUMAN TROPHOBLAST NORHAM ERLYANI BTE ABDUL HAMID B.Sc. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2013 ACKNOWLEDGEMENTS Writing this doctoral dissertation has been most challenging and it would not have been possible without the support of many people. First of all, my gratitude goes to A*STAR, NGS, and GIS for giving me the opportunity to pursue the Doctor of Philosophy. I would like to thank A/P Paul Robson for being a tremendous mentor, and for his invaluable guidance. Under his care, I was able to develop and grow into an independent researcher. His unyielding encouragement gave me confidence to pursue the work I have achieved today. For always pointing me in the right direction and having the student’s best interest at heart, I must thank the panel of advisors at GIS as well as my thesis advisory committee; A/P Neil Clarke, Asst. Prof. Tara Huber, Asst. Prof. Thilo Hagen, and Dr. Shyam Prabhakar. I owe special thanks to my co-workers, Dr. Wishva Herath and Dr. Li Juntao. Their indispensable expertise in Bioinformatics is deeply appreciated, without which much of the data would have been rendered unintelligible to me. To my peers Mehran Rahmani, Nani Djunaidi, and Tapan Mistri, I thank you all for the sharing of ideas as well as laboratory material. Together, we can conquer the PhD! Additionally, I would also like to extend my thanks to Sun Lili, Jameelah Sheikh, Woon Chow Thai, and all members of the lab for their support and cooperation, ensuring research in the Robson lab proceeds as smoothly as possible.
  • DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-Term Weight Change: Gene-Diet Interactions in Two U.S

    DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-Term Weight Change: Gene-Diet Interactions in Two U.S

    3146 Diabetes Volume 64, September 2015 Tao Huang,1 Yan Zheng,1 Qibin Qi,2 Min Xu,3 Sylvia H. Ley,1 Yanping Li,1 Jae H. Kang,4 Janey Wiggs,5 Louis R. Pasquale,4,5 Andrew T. Chan,6 Eric B. Rimm,1,4,7 David J. Hunter,1,7 JoAnn E. Manson,4,7,8 Walter C. Willett,1,4,7 Frank B. Hu,1,4,7 and Lu Qi1,4 DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts Diabetes 2015;64:3146–3154 | DOI: 10.2337/db15-0264 The first epigenome-wide association study of BMI not induced by changes in the DNA sequence (1). Increasing identified DNA methylation at an HIF3A locus associated evidence indicates that DNA methylation plays a pivotal role with BMI. We tested the hypothesis that DNA methylation in regulating body adiposity (2–5). In a recent large-scale variants are associated with BMI according to intake of epigenome-wide association study, Dick et al. (4) found B vitamins. In two large cohorts, we found significant inter- that DNA methylation at HIF3A was associated with BMI. actions between the DNA methylation–associated HIF3A However, genetic variants in this locus were not associated single nucleotide polymorphism (SNP) rs3826795 and in- with BMI, although they were associated with HIF3A meth- take of B vitamins on 10-year changes in BMI. The asso- ylationlevelsinbloodandadiposeandskintissues.The ciation between rs3826795 and BMI changes consistently authors suggested that the association between HIF3A meth- increased across the tertiles of total vitamin B and B 2 12 ylation and BMI might not be operating by the Mendelian intake (all P for interaction <0.01).
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming

    Supplemental Materials ZNF281 Enhances Cardiac Reprogramming

    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
  • HIF3A Antibody Product Type

    HIF3A Antibody Product Type

    PRODUCT INFORMATION Product name:HIF3A antibody Product type: Primary antibodies Description: Rabbit polyclonal to HIF3A Immunogen:3 synthetic peptides (human) conjugated to KLH Reacts with: Human, Mouse Tested applications: ELISA, WB & IF GENE INFORMATION Gene Symbol:HIF3A Gene Name:hypoxia inducible factor 3, alpha subunit Ensembl ID:ENSG00000124440 Entrez GeneID:64344 GenBank Accession number:AK027725 Omim ID:609976 Swiss­Prot:Q9Y2N7 Molecular weight of HIF3A: 72.4kDa Function:Involved in adaptive response to hypoxia. Suppresses hypoxia­inducible expression of HIF1A and EPAS1. Binds to core DNA sequence 5'­TACGTG­3' within the hypoxia response element (HRE) of target gene promoters. The complex HIF3A­ARNT activates the transcription of reporter genes driven by HRE. Isoform 4 has a dominant­ negative function of inactivating HIF1A­mediated transcription. Isoform 4 attenuates the binding of HIF1A to hypoxia­responsive elements (HRE), thus inhibiting HRE­driven transcription. Hypoxia induces down­regulation of isoform 4, leading to activation of HIF1A in hypoxia. Conversely, upon restoring normoxia, the expression of isoform 4 increases and thereby secure an inhibition of HIF1A activity. Isoform 4 may be a negative regulator of hypoxia­inducible gene expression in the kidney and may be involved in renal tumorigenesis. Functions as an inhibitor of angiogenesis in the cornea Expected subcellular localization:Nucleus. Cytoplasm. Note: In the nuclei of all periportal and perivenous hepatocytes. In the distal perivenous zone, detected in the cytoplasm of the hepatocytes Summary:The protein encoded by this gene is the alpha­3 subunit of one of several alpha/beta­subunit heterodimeric transcription factors that regulate many adaptive responses to low oxygen tension (hypoxia).
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology

    Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology

    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
  • Open Full Page

    Open Full Page

    Published OnlineFirst January 12, 2016; DOI: 10.1158/0008-5472.CAN-15-1859 Cancer Tumor and Stem Cell Biology Research Formation of Renal Cysts and Tumors in Vhl/Trp53-Deficient Mice Requires HIF1a and HIF2a Desir ee Schonenberger€ 1, Sabine Harlander1,2, Michal Rajski1, Robert A. Jacobs1,2,3, Anne-Kristine Lundby1,2, Mojca Adlesic1, Tomas Hejhal1, Peter J. Wild4, Carsten Lundby1,2, and Ian J. Frew1,2 Abstract The von Hippel–Lindau (VHL) tumor suppressor gene is inac- chondrial abundance and oxidative capacity, glycogen accu- tivated in the majority of clear cell renal cell carcinomas (ccRCC), mulation, and acquisition of a clear cell phenotype in Vhl- but genetic ablation of Vhl alone in mouse models is insufficient deficient renal epithelial cells. HIF1a, but not HIF2a, induced to recapitulate human tumorigenesis. One function of pVHL is to Warburg-like metabolism characterized by increased glycoly- regulate the stability of the hypoxia-inducible factors (HIF), sis, decreased oxygen consumption, and decreased ATP pro- which become constitutively activated in the absence of pVHL. duction in mouse embryonic fibroblasts, providing insights In established ccRCC, HIF1a has been implicated as a renal tumor into the cellular changes potentially occurring in Vhl mutant suppressor, whereas HIF2a is considered an oncoprotein. In this renal cells before ccRCC formation. Importantly, deletion of study, we investigated the contributions of HIF1a and HIF2a to either Hif1a or Hif2a completely prevented the formation of ccRCC initiation in the context of Vhl deficiency. We found that renal cysts and tumors in Vhl/Trp53 mutant mice. These find- deleting Vhl plus Hif1a or Hif2a specifically in the renal ings argue that both HIF1a and HIF2a exert protumorigenic epithelium did not induce tumor formation.
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D

    Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D

    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase