JET Program Survival Guide 2015 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study of Heavy Metals in Vegetables
Sci.Int.(Lahore),31(6),947-955,2019 ISSN 1013-5316; CODEN: SINTE 8 947 STUDY OF HEAVY METALS IN VEGETABLES, TOMATOES (Lycopersicon esculentum), CHILLY PEPPER (Capsicum annuam ) and RADISH (Raphanus sativus) IN MASTUNG, BALOCHISTAN, PAKISTAN. (A REVIEW) Manzoor Iqbal Khattak1 , Mahmood Iqbal Khattak2, Rukhsana Jabeen3 and Fahad Saeed1 1Chemistry Department, Balochistan Uinversity, Quetta. 2PCSIR Laboratories, Peshawar. 3Sardar Bahdur Khan Women University, Quetta. Email: [email protected] ABSTRACT: The primary target of this work presents to call attention to the aggregation substance of lethal follow elements, for example, Cd, Cr, Cu, Pb and Zn in vegetables (Tomatoes, Chilly pepper and Radish) gathered from Mastung in the district of Balochistan. The samples were investigated, and the information was collected. Further, the grouping of overwhelming metals in the examples gathered of vegetables substantiated that these vegetables might be checked before utilizing reference to the contamination of harmful metals. Additionally, these contemplated vegetables are likewise utilized for ecological contamination purposes as well. Keywords: Vegetables, Heavy Metals, Toxicity, Atomic Absorption Spectrometry. 1. INTRODUCTION carry out proper plant security measures and control these Balochistan is situated in the north focal piece of the issues. Create generation and promoting the foundation to region. It has a mainland semi-bone-dry atmosphere with improve the productivity of the advertising framework for sweltering summers and cold winters. The most restricting the vegetable industry. Ultimately the ranchers need variable for yield generation in downpour nourished zones appropriate augmentation administrations at their doorsteps of the good countries is the low precipitation and its slanted with the goal that the exploration discoveries could contact dissemination both as far as existence. -
Water Stress and Growth and Development in Radish
WAITE INSTITUTE L.4 .82 LIBRARY T,üATER STRESS AND GROüITH AND DEVELOPMENT IN RADTSH by Daryl C. Joyce B.App.Sc. (Hort.Tech. )Hons. Department of Plant PhYsiologY I'Iaite Agricultural Research Instilute UniversitY of Adelaide South Australia Thesis submitted for the Degree of Master of Agricultural Science. October,1980. TA.BLE OF CONTENTS Page SUMMARY i ACKNOI/'ILEDGEMENTS iv LIST OF FTGURES v LIST OF TABLES x CHAPTER 1. INTRODUCTION 1.1 P1ant water stress response 1.1.1 Tissue water relations 1.1.2 Growth effects of water stress 3 1.1.3 Physiology of plants during water stress 7 1.1.3.1 Stomatal behaviour in response to stress 9 1.1.3,2 Osmotic adjustmenL during water stress 9 1.1.3.3 The role of growth regulators during water stress 10 ' 1.1.3.4 Carbon dislri-bution and metabollsm during water stress 't2 1.1.3.5 Effects of stress on nitrogen metabolism and nitrogen containing compounds 13 1.1.4 The effect of water stress on ce11 growth and morphological- development 15 1.1.5 The effect of water stress of ceIl waII metabolism and on the structure and function of cells and their organelles 1g 1.2 The Radi.sh plant 1.2.1 General i-ntroduction and discussion 21 1.2.2 The Radj-sh fleshy axis 21 1.2.3 Grcwth of the Radish plant and its reponse to environmental variabl-es 22 CHAPTER 2. MATERIALS AND METHODS 2.1 Plant material 26 2.2 Growth environments ¿o 2.3 Growth systems 2T 2.4 Imposition of stress 29 2.5 Measurement of plant water status 30 2.5.1 Relative water content 30 2.5.2 !'later potential 30 2.5.3 Osmotic potentlal 31 2.6 Macroscopic -
2013-Survival-Guide-A5.Pdf
Kagoshima Survival Guide 2013 Edition Published by Kagoshima Prefecture International Affairs Division Produced by Kagoshima JET Program & Kagoshima Association for JET Kagoshima JET Program Prefectural Advisors Hirofumi Ozono, Takuyo Katanoda, Yuko Uchizono, Kennard Xu, Michelle Kato, Rachel Little, Tyler Kinkade Kagoshima Association for JET Committee Members President: Jermaine Nelson; Vice-President: Alberto Martinez; Secretary: Matt O’Boyle; Treasurer: Jay Johnston; Community Coordinator: Logan Morley; Communications Chair: Gayle Hume; Event Planner: Alex O’Brien Article Contributors Nathan Bastin, Gayle Hume, Jay Johnston, Laura Keating, Tyler Kinkade, Colin Lawrence, Rachel Little, Justin Martens, Alberto Martinez, Logan Morley, Jermaine Nelson, Alex O’Brien, Matt O’Boyle, Perry Pollard, Rachel Seaman, Kennard Xu, and countless others Cover Design: Logan Morley Layout Design: Alberto Martinez, Tyler Kinkade Table of Contents Support Network Public Transportation Prefectural Advisors ______________ 1 Routes & Timetables ______________ 25 Block System _____________________ 2 Rapica Card ____________________ 25 Emergency Numbers _____________ 2 Buses ____________________________ 26 Counseling Resources ____________ 2 Tram _____________________________ 27 Kagoshima Association for JET _____ 3 Trains ____________________________ 28 Who do I ask for help? ____________ 3 Ferries ___________________________ 29 KAJET Event Schedule ____________ 4 Driving First Things First General Information ______________ 31 Personal Safety ___________________ -
Author's Blurb
Author’s Blurb TK Lim (Tong Kwee Lim) obtained his bachelor’s and plant products into and out of Australia from and master’s degrees in Agricultural Science and for the Middle East and Asian region. During from the University of Malaya and his PhD his time with ACIAR, he oversaw and managed (Botanical Sciences) from the University of international research and development programs Hawaii. He worked in the Agricultural University in plant protection and horticulture, covering a of Malaysia for 20 years as a Lecturer and wide array of crops that included fruit, plantation Associate Professor; as Principal Horticulturist crops, vegetables, culinary and medicinal herbs for 9 years for the Department of Primary and spices mainly in southeast Asia and the Industries and Fisheries, Darwin, Northern Pacifi c. In the course of his four decades of work- Territory; for 6 years as Manager of the Asia and ing career, he has travelled extensively world- Middle East Team in Plant Biosecurity Australia, wide to many countries in South Asia, East Asia, Department of Agriculture, Fisheries and Southeast Asia, Middle East, Europe, the Pacifi c Forestry, Australia, and for 4 years as Research Islands, USA and England and also throughout Program Manager with the Australian Centre for Malaysia and Australia. Since his tertiary educa- International Agriculture Research (ACIAR), tion days, he always had a strong passion for Department of Foreign Affairs and Trade, crops and took an avid interest in edible and Australia, before he retired from public service. medicinal -
Raphanus Sativus (Radish): Their Chemistry and Biology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Review provided by Crossref TheScientificWorldJOURNAL (2004) 4, 811–837 ISSN 1537-744X; DOI 10.1100/tsw.2004.131 Raphanus sativus (Radish): Their Chemistry and Biology Rosa Martha Pérez Gutiérrez* and Rosalinda Lule Perez Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias extractivas IPN, México D.F. E-mail: [email protected] Received January 22, 2004; Revised August 14, 2004; Accepted August 18, 2004; Published September 13, 2004 Leaves and roots of Raphanus sativus have been used in various parts of the world to treat cancer and as antimicrobial and antiviral agents. The phytochemistry and pharmacology of this radish is reviewed. The structures of the compounds isolated and identified are listed and aspects of their chemistry and pharmacology are discussed. The compounds are grouped according to structural classes. KEYWORDS: Raphanus sativus, Cruciferae, alkaloids, proteins, polysaccharides, phenolic and sulfur compounds DOMAINS: pharmaceutical sciences, therapeutic drug modeling INTRODUCTION The plant family of Cruciferae contains many important vegetables of economic importance. Raphanus sativus L. is originally from Europe and Asia. It grows in temperate climates at altitudes between 190 and 1240 m. It is 30–90 cm high and its roots are thick and of various sizes, forms, and colors (see Fig. 1). They are edible with a pungent taste. Salted radish roots (Takuan), which are consumed in the amount of about 500,000 tons/year in Japan, are essentially one of the traditional Japanese foods. The salted radish roots have a characteristic yellow color, which generates during storage. -
Smartcard Ticketing Systems for More Intelligent Railway Systems
Hitachi Review Vol. 60 (2011), No. 3 159 Smartcard Ticketing Systems for More Intelligent Railway Systems Yuichi Sato OVERVIEW: The smartcard ticketing systems whose scope is expanding Masakazu Ito across Japan are now starting to be used not just for public transport Manabu Miyatake ticketing services but also to provide users with an infrastructure that they use in their daily lives including electronic money and mobile services, credit card integration, building access control, and student identification. Hitachi has already contributed to this process through the development and implementation of smartcard ticketing systems for different regions and is now working on the development of systems that support the implementation of smart systems that underpin society and combine information and control to provide new social infrastructure for the foreseeable future. INTRODUCTION TABLE 1. Smartcard Ticketing Systems in Japan A number of smartcard ticketing systems have been Smartcard ticketing systems have spread right across Japan introduced in different parts of Japan since the over the last 10 years. *1 Service Smartcard Suica service of the East Japan Railway Company Operator commenced operation in November 2001. As of March commenced name* 2009, systems of this type had been introduced at November, 2001 Suica East Japan Railway Company Nagasaki Transportation Bureau of Nagasaki January, 2002 about 25 companies including both JR (Japan Railway) Smartcard Prefecture and others IC Saitama Railway Co., Ltd. (switched to Group and private railway companies (see Table 1). March, 2002 The East Japan Railway Company is the leader TEIKIKEN PASMO) Monorail April, 2002 Tokyo Monorail Co., Ltd. in this field and its aims in introducing the Suica Suica service include providing its passengers with greater July, 2002 Setamaru Tokyu Corporation convenience, facilitating cashless operation at railway December, 2002 Rinkai Suica Tokyo Waterfront Area Rapid Transit, Inc. -
A Case Study of the E-Money Application in Japanese Public Transportation
A CASE STUDY OF THE E-MONEY APPLICATION IN JAPANESE PUBLIC TRANSPORTATION Shoichi Morimoto Department of Business Administration, Senshu University, 2-1-1 Higashi-mita, Tama-ku, 214-8580, Kanagawa, Japan Keywords: Contactless smart card, RFID, Near field communication, ISO/IEC 14443. Abstract: Japan leads the world in the field of a rechargeable contactless smart card used as a fare card of public trans- portation. The card triggered off the spread of Japanese e-money, however, the e-money situation has various intricate problems to tackle. Therefore, we have surveyed the spread process of the e-money and special circumstances of Japanese public transportation. In this paper we describe the business success factors and background. We also analyze and propose the solution against the problems and objectives for globalization of the market. 1 INTRODUCTION However, the e-money market has some problems to solve. Since each transportation company has is- Recently, the application of e-money has expanded sued its independent card, the Japanese transporta- into a means of payment of public transportation. The tion trade is flooded with many kinds (about 40) of e-money for the fare is generally implemented by contactless smart cards. The introduction of the card a smart card, particularly a contactless RFID smart system is also very expensive, thus small companies card. Such a contactless smart card is used all over which do not sufficiently have the capital strength the world, e.g., Octopus card in Hong Kong, Suica (e.g., a local bus company) cannot even introduce the card in Japan, Oyster card in London, Navigo card in card and they are outdistanced. -
Toward a Future of Limitless Promise
Toward a Future of Limitless Promise Aeon Environmental and Social Report Sustainability Report 2010 Full Edition Everyday Eco. Now in Progress. Everyday Aeon is wholly committed to protecting the environment-- from encouraging use of My Bag and My Basket, to selling fresh fish unpackaged, recycling and tree planting. Together with our customers we want to create a pleasant, promising day, every day. The momentum of Everyday Eco continues to build. For any inquiries or comments concerning this report or our environmental and social activities, please contact: AEON CO.,LTD. Corporate Citizenship Department 1-5-1 Nakase, Mihama-ku, Chiba-shi, Chiba, 261-8515 Japan Tel: +81-43-212-6037 Fax: +81-43-212-6790 URL: http://www.aeon.info/ 2010.5.7 Aeon Basic Principles Aeon Group Profile Peace We are Aeon. Aeon develops community-oriented shopping centers ers lead healthy, vibrant lives, including small supermar- anchored by flagship general merchandising stores. Our kets, convenience stores, drugstores, and general shopping centers include mall-type facilities made up of financial services. We aim to create a future of limitless a variety of specialty stores covering a broad market promise, while we remain, as a global "customer The Customer range and smaller, more focused facilities with specialty satisfaction" business, firmly committed to putting the stores and services needed for everyday living. We customer first, not only in Japan but in China, Thailand, operate a wide variety of businesses to help our custom- Malaysia and around the world. -
Raphanus Sativus (Radish): Their Chemistry and Biology
Review TheScientificWorldJOURNAL (2004) 4, 811–837 ISSN 1537-744X; DOI 10.1100/tsw.2004.131 Raphanus sativus (Radish): Their Chemistry and Biology Rosa Martha Pérez Gutiérrez* and Rosalinda Lule Perez Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias extractivas IPN, México D.F. E-mail: [email protected] Received January 22, 2004; Revised August 14, 2004; Accepted August 18, 2004; Published September 13, 2004 Leaves and roots of Raphanus sativus have been used in various parts of the world to treat cancer and as antimicrobial and antiviral agents. The phytochemistry and pharmacology of this radish is reviewed. The structures of the compounds isolated and identified are listed and aspects of their chemistry and pharmacology are discussed. The compounds are grouped according to structural classes. KEYWORDS: Raphanus sativus, Cruciferae, alkaloids, proteins, polysaccharides, phenolic and sulfur compounds DOMAINS: pharmaceutical sciences, therapeutic drug modeling INTRODUCTION The plant family of Cruciferae contains many important vegetables of economic importance. Raphanus sativus L. is originally from Europe and Asia. It grows in temperate climates at altitudes between 190 and 1240 m. It is 30–90 cm high and its roots are thick and of various sizes, forms, and colors (see Fig. 1). They are edible with a pungent taste. Salted radish roots (Takuan), which are consumed in the amount of about 500,000 tons/year in Japan, are essentially one of the traditional Japanese foods. The salted radish roots have a characteristic yellow color, which generates during storage. This specie is used popularly to treat liver and respiratory illnesses[1]. -
Radish (Raphanus Sativus)
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.936419; this version posted February 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Genome sequence analysis of a giant-rooted ‘Sakurajima daikon’ radish (Raphanus sativus) 2 Running title: Genome of ‘Sakurajima daikon’ radish 3 4 Kenta Shirasawa1*, Hideki Hirakawa1, Nobuko Fukino2†, Hiroyasu Kitashiba3, and Sachiko Isobe1 5 1Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan, 2Institute of Vegetable and 6 Floriculture Science, NARO, Tsu, Mie 514-2392, Japan, and 3Graduate School of Agricultural 7 Science, Tohoku University, Sendai, Miyagi 980-0845, Japan 8 †Current address: Strategic Planning Headquarters, NARO, Tsukuba, Ibaraki 305-8517, Japan 9 *Correspondence: [email protected] 10 11 Abstract 12 Daikon radish (Raphanus sativus) roots vary in size and shape between cultivars. This study reports 13 the genome sequence assembly of a giant-rooted ‘Sakurajima daikon’ radish variety, 14 ‘Okute-Sakurajima’, which produces extremely large round roots. Radish genome assembly is 15 hampered by the repetitive and complex nature of the genome. To address this, single-molecule 16 real-time technology was used to obtain long-read sequences at 60× genome coverage. De novo 17 assembly of the long reads generated 504.5 Mb contig sequences consisting of 1,437 sequences with 18 contig N50 length of 1.2 Mb, including 94.1% of the core eukaryotic genes. Nine pseudomolecule 19 sequences, comprising 69.3% of the assembled contig length, were generated with high-density SNP 20 genetic maps. -
KAGOSHIMA and VICINITY PAGE 1 / 5
KAGOSHIMA and VICINITY PAGE 1 / 5 Practical Travel Guide - 707 KAGOSHIMA and VICINITY Kagoshima City(鹿児島市) , with a population of 607,400 (as National Park(霧島錦江湾国立公園) including Ebino Kogen of Feb. 2014), is the capital of Kagoshima Prefecture and the cen- Plateau, Sakurajima and Ibusuki Onsen. ter of industry, economy, culture and communications in Southern Kyushu. It is an old castle town which is often called Ibusuki Onsen(指宿温泉) , a seaside hot spring, 45 km south “Naples of the Orient,” because of the city’s bright sunshine, of Kagoshima City, is reached in about 50 min. by Limited blue sky and beautiful ocean. The city is closely associated with Express “Ibusuki no Tamatebako” from Kagoshima-Chuo Takamori Saigo (1827–1877) who played an important role in Station. Blessed with a very pleasant climate, a mean annual tem- bringing the birth of modern Japan. Kagoshima is the home pre- perature being 18.3 degrees C. (64.5 degrees F.), and inexhaust- fecture of this brave, vigorous hero and there are a number of ible hot spring water, it is one of the most celebrated hot spring historic relics related to him in the city. Kagoshima City is con- resorts in Japan. It owes its popularity in part to the lovely white veniently linked with big attractions of Kirishima-kinko-Bay seashore and surrounding lush subtropical vegetation. Access: By Rail Destination Type of Transportation Time required One-way Fare Tokyo via Hakata JR Shinkansen “NOZOMI” 5 hrs. 15 min. ¥29,650 Kagoshima-Chuo Sta. JR Shinkansen “TSUBAME”, “SAKURA” or “MIZUHO” 1 hrs. -
Characteristic Analysis of Trigonelline Contained in Raphanus Sativus Cv
nutrients Article Characteristic Analysis of Trigonelline Contained in Raphanus sativus Cv. Sakurajima Daikon and Results from the First Trial Examining Its Vasodilator Properties in Humans Maho Sasaki 1, Yuri Nonoshita 2, Takashi Kajiya 3, Nobuhiko Atsuchi 3, Megumi Kido 4, Djong-Chi Chu 5, Lekh Raj Juneja 5, Yuji Minami 1,2,6 and Katsuko Kajiya 1,2,6,* 1 Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; [email protected] (M.S.); [email protected] (Y.M.) 2 Department of Food Science & Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan; [email protected] 3 Department of Cardiology, Tenyoukai Central Hospital, Kagoshima 892-0822, Japan; [email protected] (T.K.); [email protected] (N.A.) 4 Department of Human Life and Science, Kagoshima Women’s College, Kagoshima 890-8565, Japan; [email protected] 5 ROHTO Pharmaceutical Co., Ltd., Osaka 544-8666, Japan; [email protected] (D.-C.C.); [email protected] (L.R.J.) 6 Laboratory of Biochemistry & Nutritional Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan * Correspondence: [email protected]; Tel.: +81-99-285-8631 Received: 31 May 2020; Accepted: 22 June 2020; Published: 23 June 2020 Abstract: Vascular disease poses a major public health problem worldwide. Trigonelline isolated from Raphanus sativus cv. Sakurajima Daikon (Sakurajima radish) induces nitric oxide production from vascular endothelial cells and enhances vascular function. Here, we investigated the characteristics of trigonelline and its effects on endothelial function after consumption of Sakurajima radish by humans.