<B>West Henrico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Extension of the Systematic Approach to Tropical Cyclone Track Forecasting in the Eastern and Central North Pacific
NPS ARCHIVE 1997.12 BOOTHE, M. NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXTENSION OF THE SYTEMATIC APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC by Mark A. Boothe December, 1997 Thesis Co-Advisors: Russell L.Elsberry Lester E. Carr III Thesis B71245 Approved for public release; distribution is unlimited. DUDLEY KNOX LIBRARY NAVAl OSTGRADUATE SCHOOL MONTEREY CA 93943-5101 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching casting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, I'aperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 1997. Master's Thesis TITLE AND SUBTITLE EXTENSION OF THE SYSTEMATIC 5. FUNDING NUMBERS APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC 6. AUTHOR(S) Mark A. Boothe 7. PERFORMING ORGANIZATION NAME(S) AND ADDR£SS(ES) PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONTTORIN G AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. -
Notable Tropical Cyclones and Unusual Areas of Tropical Cyclone Formation
A flood is an overflow of an expanse of water that submerges land.[1] The EU Floods directive defines a flood as a temporary covering by water of land not normally covered by water.[2] In the sense of "flowing water", the word may also be applied to the inflow of the tide. Flooding may result from the volume of water within a body of water, such as a river or lake, which overflows or breaks levees, with the result that some of the water escapes its usual boundaries.[3] While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt, it is not a significant flood unless such escapes of water endanger land areas used by man like a village, city or other inhabited area. Floods can also occur in rivers, when flow exceeds the capacity of the river channel, particularly at bends or meanders. Floods often cause damage to homes and businesses if they are placed in natural flood plains of rivers. While flood damage can be virtually eliminated by moving away from rivers and other bodies of water, since time out of mind, people have lived and worked by the water to seek sustenance and capitalize on the gains of cheap and easy travel and commerce by being near water. That humans continue to inhabit areas threatened by flood damage is evidence that the perceived value of living near the water exceeds the cost of repeated periodic flooding. The word "flood" comes from the Old English flod, a word common to Germanic languages (compare German Flut, Dutch vloed from the same root as is seen in flow, float; also compare with Latin fluctus, flumen). -
MASARYK UNIVERSITY BRNO Diploma Thesis
MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories. -
On Tropical Cyclones
Frequently Asked Questions on Tropical Cyclones Frequently Asked Questions on Tropical Cyclones 1. What is a tropical cyclone? A tropical cyclone (TC) is a rotational low-pressure system in tropics when the central pressure falls by 5 to 6 hPa from the surrounding and maximum sustained wind speed reaches 34 knots (about 62 kmph). It is a vast violent whirl of 150 to 800 km, spiraling around a centre and progressing along the surface of the sea at a rate of 300 to 500 km a day. The word cyclone has been derived from Greek word ‘cyclos’ which means ‘coiling of a snake’. The word cyclone was coined by Heary Piddington who worked as a Rapporteur in Kolkata during British rule. The terms "hurricane" and "typhoon" are region specific names for a strong "tropical cyclone". Tropical cyclones are called “Hurricanes” over the Atlantic Ocean and “Typhoons” over the Pacific Ocean. 2. Why do ‘tropical cyclones' winds rotate counter-clockwise (clockwise) in the Northern (Southern) Hemisphere? The reason is that the earth's rotation sets up an apparent force (called the Coriolis force) that pulls the winds to the right in the Northern Hemisphere (and to the left in the Southern Hemisphere). So, when a low pressure starts to form over north of the equator, the surface winds will flow inward trying to fill in the low and will be deflected to the right and a counter-clockwise rotation will be initiated. The opposite (a deflection to the left and a clockwise rotation) will occur south of the equator. This Coriolis force is too tiny to effect rotation in, for example, water that is going down the drains of sinks and toilets. -
Hazard Assessment of Storm Events for the Battery, New York
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/284359149 Hazard assessment of storm events for The Battery, New York ARTICLE in OCEAN & COASTAL MANAGEMENT · NOVEMBER 2015 Impact Factor: 1.75 · DOI: 10.1016/j.ocecoaman.2015.11.006 READS 32 4 AUTHORS, INCLUDING: José L. S. Pinho José S. Antunes do Carmo University of Minho University of Coimbra 88 PUBLICATIONS 142 CITATIONS 143 PUBLICATIONS 438 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: José L. S. Pinho letting you access and read them immediately. Retrieved on: 04 April 2016 Dear Author, Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF. Note also that this file should not be used for submitting corrections. OCMA3821_proof ■ 11 November 2015 ■ 1/10 Ocean & Coastal Management xxx (2015) 1e10 55 Contents lists available at ScienceDirect 56 57 Ocean & Coastal Management 58 59 60 journal homepage: www.elsevier.com/locate/ocecoaman 61 62 63 64 65 1 Q4 Hazard assessment of storm events for the battery, New York 66 2 67 3 a a b, * b 68 Q3 Mariana Peixoto Gomes , Jose Luís Pinho , Jose S. Antunes do Carmo , Lara Santos 4 69 a 5 University of Minho, Braga, Portugal 70 b University of Coimbra, Coimbra, Portugal 6 71 7 72 8 73 article info abstract 9 74 10 75 Article history: The environmental and socio-economic importance of coastal areas is widely recognized, but at present 11 76 Received 1 October 2014 these areas face severe weaknesses and high-risk situations. -
Trenton, New Jersey (Assunpink)
Top10 Highest Historical Crests: Assunpink Creek at Trenton, NJ Latitude: 40.222 Period of Record: 1932-Present Longitude: -74.778 Flood Stage: 8.5 Last Flood: 11/25/2018 Number of Floods: 70 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 8/28/2011 15.12 5,820 Hurricane Irene brought heavy rains and flooding 26-28 August 2011. Area averaged rainfall from gauge and radar data indicated a broad swath of 3 to 10 inches with over 13” at a couple of spots. 7/21/1975 14.61 5,450 Low pressure off to the North, areas of New Jersey were sitting in a trough which brought more than 10 inches at several locations in New Jersey. 9/17/1999 14.01 4,510 Hurricane Floyd produced heavy rainfall from Virginia to Long Island. Rainfall totals ranged from 12 inches in Delaware to 16.57 inches in Newport News, Virginia. Two dams burst in New Jersey and several flood records were broken in New Jersey. 8/28/1971 13.46 3,920 Tropical Storm Doria dumped 3 to 7 inches of rain across the region. Localized rainfall amounts of 8 to 10 inches were reported in the Tidewater area, Eastern NJ and Eastern PA. 4/16/2007 13.28 4,050 Two low successive low pressure systems produced rain and snow that caused flooding. Warm temperatures after the passage of the second low led to snowmelt and additional flooding. 7/14/1975 11.71 3,180 A stationary front produced rainfall for the entire area from the 9th through the 16th. -
Hydrology of Tropical Storms Irene and Lee
Hydrology of Tropical Storms Irene and Lee Britt E. Westergard, Senior Service Hydrologist National Weather Service, Albany, NY with Joseph Villani, Hugh Johnson, Vasil Koleci, Kevin Lipton, George Maglaras, Kimberly McMahon, Timothy Scrom, and Thomas Wasula Photo by Tim Scrom of NWS Lake near Hensonville, Greene County NYSFOLA Meeting May 4, 2012 National Weather Service • High Impact Weather • Warning the U.S. Public • Decision Support Services • Economic Preservation “To provide weather, water, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy.” National Weather Service • 122 Forecast Offices • 13 River Forecast Centers • 9 National Centers, including: • Storm Prediction Center • National Hurricane Center • Hydrometeorological Prediction Center • Climate Prediction Center Local NWS Office • Open 24 x 7 x 365 • Approx. 23 on staff • Meteorologists • Hydrologist • IT/Electronics • Administration Hydrology Topics Tropical Storm Irene Remnants of T.S. Lee • Antecedent conditions • Antecedent conditions • Forecasts / Outlook • Rainfall • Storm Track • Flood magnitude • Rainfall • Operational challenges • Flood magnitude • Storm surge on Hudson • Operational challenges Irene: Antecedent Conditions http://hydrology.princeton.edu/~luo/research/FORECAST/current.php http://www.erh.noaa.gov/mmefs/ Irene: MMEFS Outlook http://www.erh.noaa.gov/mmefs/ Irene: MMEFS Outlook Irene: Forecast Rainfall Aug 27-29, 2011 (HPC) Forecast maximum 9.29 – Actual maximum just over 18 inches! Irene: Hydrologic Forecasts • Flood watch issued at 4:47 am Friday Aug. 26th WIDESPREAD RAINFALL AMOUNTS OF 4 TO 7 INCHES ARE LIKELY. LOCALIZED AMOUNTS OVER THE HIGHER TERRAIN OF THE CATSKILLS...BERKSHIRES...LITCHFIELD HILLS AND GREEN MOUNTAINS COULD REACH 10 INCHES. IF THIS AMOUNT OF RAIN OCCURS MANY MAIN STEM RIVERS WOULD FLOOD. -
Climatology of Tropical Cyclones in New England and Their Impact at the Blue Hill Observatory, 1851-2012
Climatology of Tropical Cyclones in New England and Their Impact at the Blue Hill Observatory, 1851-2012 Michael J. Iacono Blue Hill Meteorological Observatory Updated September 2013 Introduction Over the past four centuries, extreme hurricanes have occurred in New England at intervals of roughly 150 years, as evidenced by the three powerful storms of 1635, 1815, and 1938. Histories and personal accounts of these infamous hurricanes make for fascinating reading (Ludlum, 1963; Minsinger, 1988), and they serve as an important reminder of the devastating impact that tropical cyclones can have in the Northeast. Most tropical systems in New England are less damaging, but they can still disrupt our daily lives with strong winds, heavy rain, and flooding. This article, which updates an earlier report in the Blue Hill Observatory Bulletin (Iacono, 2001), will describe the climatology of all 250 tropical cyclones that have affected New England since the mid-19th century and will summarize their intensity, frequency, and specific meteorological impact at the Blue Hill Observatory. A hurricane is a self-sustaining atmospheric process in which sunlight, water, and wind combine to transfer energy from the tropics to higher latitudes. The uneven distribution of solar heating at the Earth’s surface ultimately drives much of our weather as the atmosphere continually circulates to equalize the tropical warmth and the polar cold. In the tropics, this process is normally tranquil and slow, brought about through the life cycles of individual thunderstorms, the prevailing winds, and ocean currents. However, under the right conditions very warm air and water in the tropics trigger the formation of the most efficient heat transfer mechanism available to the atmosphere: a hurricane. -
Wmo:An'nual Report 1994
The World Meteorological Organization The World Meteorological Organization (WMO), of which 178'" States and Territories are Members, is a specialized agency of the United Nations. The purposes ofthe Organization are: (a) To facilitate world-wide cooperation in the establishment of networks of stations for the making of meteorological observations as well as hydrological and other geophysical observations related to meteorology, and to promote the establishment and maintenance of centres charged with the provision of meteorological and related services; (b) To promote the establishment and maintenance ofsystems for the rapid exchange of meteorological and related information; (c) To promote standardization of meteorological and related observations and to ensure the uniform pub lication of observations and statistics; (d) To further the application of meteorology to aviation, shipping, water problems, agriculture and other human activities; (e) To promote activities in operational hydrology and to further close cooperation between Meteorological and Hydrological Services; and (f) To encourage research and training in meteorology and, as appropriate, in related fields and to assist in coordinating the international aspects of such research and training. (Convention ofthe World Meteorological Organization, Article 2) The Organization consists of the following: The World Meteorological Congress, the supreme body of the Organization, brings together the delegates of Members once every four years to determine general policies for the fulfilment -
P3.4 the Distribution of Precipitation Over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones
20th Conf. on Weather Analysis and Forecasting Seattle, WA, 11–15 January 2004 P3.4 The Distribution of Precipitation over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones David P. DeLuca*, Lance F. Bosart, Daniel Keyser University at Albany, State University of New York, Albany, New York and David R. Vallee National Weather Service Forecast Office, Taunton, Massachusetts 1. INTRODUCTION United States. Approximately 3500 surface stations were analyzed for each storm period (currently: 1950– Landfalling and transitioning tropical cyclones 1991) by Ron Horwood of NWS WFO Taunton, MA. pose a significant heavy precipitation forecast challenge Obvious erroneous data were removed to obtain the most over the northeastern United States. The forecast accurate analyses possible. challenge is heightened because the heavy rainfall distribution associated with these tropical cyclones can A subset of eight storms (Fig. 1) where the be modulated significantly when the poleward-moving precipitation distribution is possibly influenced by storms interact with mobile midlatitude upper-level coastal frontogenesis was chosen from well–documented troughs and coastal fronts over regions of complex or famous cases. Detailed analyses were conducted terrain. The purpose of this paper is to document the using the four times daily (0000, 0600, 1200 and 1800 large spatial and temporal variability of heavy UTC) NCEP/NCAR reanalysis dataset (Kalnay et al. precipitation that accompanies landfalling and 1996; Kistler et al. 2001) and archived DIFAX surface transitioning tropical cyclones, and to determine the charts in an attempt to elucidate both synoptic and physical basis for the observed rainfall distribution. mesoscale processes. 2. METHODOLOGY 3. RESULTS A 38-storm dataset (Fig. -
Section 5.4-5.4.2
SECTION 5.4: RISK ASSESSMENT – HAZARDS PROFILES AND VULNERABILITY ASSESSMENT 5.4 HAZARDS PROFILES AND VULNERABILITY ASSESSMENT The following sections profile and assess vulnerability for each hazard of concern. For each hazard, the profile includes: the hazard description; its location and extent; previous occurrences and losses; and the probability of future events. The vulnerability assessment for each hazard includes: an overview of vulnerability; the data and methodology used; the impact on life, health and safety; impact on general building stock; impact on critical facilities; impact on the economy; additional data needs and next steps; and the overall vulnerability assessment finding. Hazards are presented in hazard priority order, starting with the coastal storm hazard and ending with the earthquake hazard. DMA 2000 Hazard Mitigation Plan – City of New Rochelle, New York 5.4-1 September 2010 SECTION 5.4.1: COASTAL AND SEVERE STORMS 5.4.1 COASTAL AND SEVERE STORMS This section provides a profile and vulnerability assessment for the coastal storm and severe storm hazards. HAZARD PROFILE Hazard profile information is provided in this section, including information on description, extent, location, previous occurrences and losses and the probability of future occurrences within the City of New Rochelle. Description Coastal storms (hurricanes, tropical depressions, tropical storms, and Nor’Easters) are typically events associated with severe storms (hailstorms, windstorms, lightning, thunderstorms and tornadoes). Therefore, for the purpose of this HMP, severe storms and coastal storms are grouped together. Both types of storms affect the City of New Rochelle. Severe Storm The severe storm hazard includes the following types of events: hailstorms, windstorms, lightning, thunderstorms and tornadoes.