Hazard Assessment of Storm Events for the Battery, New York

Total Page:16

File Type:pdf, Size:1020Kb

Hazard Assessment of Storm Events for the Battery, New York See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/284359149 Hazard assessment of storm events for The Battery, New York ARTICLE in OCEAN & COASTAL MANAGEMENT · NOVEMBER 2015 Impact Factor: 1.75 · DOI: 10.1016/j.ocecoaman.2015.11.006 READS 32 4 AUTHORS, INCLUDING: José L. S. Pinho José S. Antunes do Carmo University of Minho University of Coimbra 88 PUBLICATIONS 142 CITATIONS 143 PUBLICATIONS 438 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: José L. S. Pinho letting you access and read them immediately. Retrieved on: 04 April 2016 Dear Author, Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF. Note also that this file should not be used for submitting corrections. OCMA3821_proof ■ 11 November 2015 ■ 1/10 Ocean & Coastal Management xxx (2015) 1e10 55 Contents lists available at ScienceDirect 56 57 Ocean & Coastal Management 58 59 60 journal homepage: www.elsevier.com/locate/ocecoaman 61 62 63 64 65 1 Q4 Hazard assessment of storm events for the battery, New York 66 2 67 3 a a b, * b 68 Q3 Mariana Peixoto Gomes , Jose Luís Pinho , Jose S. Antunes do Carmo , Lara Santos 4 69 a 5 University of Minho, Braga, Portugal 70 b University of Coimbra, Coimbra, Portugal 6 71 7 72 8 73 article info abstract 9 74 10 75 Article history: The environmental and socio-economic importance of coastal areas is widely recognized, but at present 11 76 Received 1 October 2014 these areas face severe weaknesses and high-risk situations. The increased demand and growing human 12 77 Received in revised form occupation of coastal zones have greatly contributed to exacerbating such weaknesses. Today, 13 6 November 2015 throughout the world, in all countries with coastal regions, episodes of waves overtopping and coastal 78 14 Accepted 8 November 2015 flooding are frequent. These episodes are usually responsible for property losses and often put human 79 Available online xxx 15 lives at risk. The floods are caused by coastal storms primarily due to the action of very strong winds. The 80 16 propagation of these storms towards the coast induces high water levels. It is expected that climate 81 17 Keywords: fi Cyclones change phenomena will contribute to the intensi cation of coastal storms. In this context, an estimation 82 fl 18 Storm surges of coastal ooding hazards is of paramount importance for the planning and management of coastal 83 19 Hazard assessment zones. Consequently, carrying out a series of storm scenarios and analyzing their impacts through nu- 84 20 Numerical modeling merical modeling is of prime interest to coastal decision-makers. Firstly, throughout this work, historical 85 New York coast storm tracks and intensities are characterized for the northeastern region of United States coast, in terms 21 86 Delft3D 22 of probability of occurrence. Secondly, several storm events with high potential of occurrence are fi 87 23 generated using a speci c tool of DelftDashboard interface for Delft3D software. Hydrodynamic models are then used to generate ensemble simulations to assess storms' effects on coastal water levels. For the 88 24 United States’ northeastern coast, a highly refined regional domain is considered surrounding the area of 89 25 The Battery, New York, situated in New York Harbor. Based on statistical data of numerical modeling 90 26 results, a review of the impact of coastal storms to different locations within the study area is performed. 91 27 © 2015 Published by Elsevier Ltd. 92 28 93 29 94 30 95 31 96 32 97 33 1. Introduction events can cause or worsen various risk situations, such as episodes 98 fl 34 of overtopping of coastal defenses, coastal ooding with local water 99 35 Coastal zones are of major importance due to their intrinsic surface elevation anomalies reaching up to several meters (Kron, 100 36 environmental and socio-economic characteristics, mainly related 2012), coastal erosion and loss of territory, resulting in countless 101 37 with their high demographic densities (residents and tourists damages including loss of property and human lives. 102 38 during the bathing season) and natural resources. These areas are Variations of storm surge heights depend on numerous factors, 103 39 affected by natural disasters mainly caused by weather events, such as the tropical storm category, forward speed, radius of 104 40 including coastal storms that can induce storm surges. A storm maximum winds (RMW), proximity of the storm trajectory to the 105 41 surge is an irregular rise in sea level generated by a tropical cy- coastal zone, bathymetry, coastal geomorphology and shape of the 106 42 clone's wind, waves, and low atmospheric pressure. Storm tides are coastline (Nott, 2006). However, the storm's forward speed can be 107 43 also induced when the combination of astronomic high tides and considered one of the most important factors presenting a greater 108 fl 44 the storm surge occurs, causing high elevations of the water surface in uence than the wind intensity or the RMW (Rego and Li, 2009). 109 45 (FEMA, 2003). Fast moving storms cause higher surges over open coast and lower 110 46 Tropical storms and wind storms, constituting about 38% of the surges in protected estuaries, while slower moving storms usually 111 fl fl 47 total natural disasters, are responsible for 19% of deaths, 39% of result in greater ooding in estuaries and smaller values of ooding 112 48 overall losses and 72% of global insured losses (Kron, 2012). Such along the coast. 113 49 Thus, numerical modeling systems are essential for a detailed 114 50 forecast of the possible impacts of coastal storms in terms of water 115 * fl 51 Corresponding author. levels, ood area and wind speed. Such studies should allow for the 116 E-mail address: [email protected] (J.S. Antunes do Carmo). 52 117 53 http://dx.doi.org/10.1016/j.ocecoaman.2015.11.006 118 54 0964-5691/© 2015 Published by Elsevier Ltd. 119 Please cite this article in press as: Gomes, M.P., et al., Hazard assessment of storm events for the battery, New York, Ocean & Coastal Management (2015), http://dx.doi.org/10.1016/j.ocecoaman.2015.11.006 OCMA3821_proof ■ 11 November 2015 ■ 2/10 2 M.P. Gomes et al. / Ocean & Coastal Management xxx (2015) 1e10 1 identification of the most vulnerable areas and assist in proper Association of Port Authorities, AAPA, ranked the Port of New York/ 66 2 planning and management of existing coastal resources in the long New Jersey as the second busiest port in the United Stated, based on 67 3 term. In the future, such scenarios may worsen due to climate total imports and exports by weight (American Association of Port 68 4 change occurrences, considering the possible rise in sea level Authorities (2014)). 69 5 (Klemas, 2009), as well as coastal storms with greater frequency The NYC Panel on Climate Change, NPCC, projects that New York 70 6 and intensity (Weisse et al., 2012). City could see up to 0.76 m of sea level rise by the 2050s as well as 71 7 Tropical cyclones usually form between 5 and 30N latitude, triple the number of days above 90 F(NPCC, 2013). The Pre- 72 8 usually moving toward the west. This 5N formation is required in liminary Work Maps released by FEMA in June 2013 for the 2020s 73 9 order to produce a minimum of Coriolis force required for the predict that the flooded area could expand to 153 km2, encom- 74 10 development of a tropical cyclone (Landsea and Goldenberg, 2004). passing 88,000 buildings. That magnitude of sea level rise can 75 11 In the North Atlantic Basin, tropical storms occur with a certain threaten communities residing in low-lying New York areas and 76 12 seasonality (mainly concentrated between August and September) make flooding as severe as today's 100-year storm at The Battery up 77 13 and usually affect the Eastern United States and Canada (between 1 to five times more likely. New York City in collaboration with the 78 14 and 2 storms every year) and occasionally also Western Europe (one Swiss Reinsurance Company has performed an initial loss- 79 15 storm in 1 or 2 years) (Hart and Evans, 2001; Keim et al., 2004). In the modeling, which indicates that due to sea level rise, NYC is 17% 80 16 case of the Eastern United States, the Atlantic “hurricane season” more likely in the 2020s to see a storm that causes nineteen billion 81 17 runs from June 1st to November 30th (Landsea and Goldenberg, dollars in damages, as Superstorm Sandy did (Bloomberg, 2013). 82 18 2004). When reaching 30N latitude, the tropical cyclones often The main objective of this work is to study storm surge occur- 83 19 move northwest affecting the Eastern United States and Canada. rences in the northeastern United States coast. The ongoing pop- 84 20 As the tropical cyclone develops, it reaches a point where it ulation increase along the coast, verified in the United States' 85 21 transitions from a tropical system to an extratropical system. A eastern coast only exacerbates the importance of the effects of 86 22 tropical transition is referred to as a tropical cyclone that moves eventual coastal flooding resulting from storm surges. This work 87 23 over colder water and into strong shear at high latitudes (Hart and seeks to identify and analyze the impact of historic tropical systems 88 24 Evans, 2001).
Recommended publications
  • Trenton, New Jersey (Assunpink)
    Top10 Highest Historical Crests: Assunpink Creek at Trenton, NJ Latitude: 40.222 Period of Record: 1932-Present Longitude: -74.778 Flood Stage: 8.5 Last Flood: 11/25/2018 Number of Floods: 70 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 8/28/2011 15.12 5,820 Hurricane Irene brought heavy rains and flooding 26-28 August 2011. Area averaged rainfall from gauge and radar data indicated a broad swath of 3 to 10 inches with over 13” at a couple of spots. 7/21/1975 14.61 5,450 Low pressure off to the North, areas of New Jersey were sitting in a trough which brought more than 10 inches at several locations in New Jersey. 9/17/1999 14.01 4,510 Hurricane Floyd produced heavy rainfall from Virginia to Long Island. Rainfall totals ranged from 12 inches in Delaware to 16.57 inches in Newport News, Virginia. Two dams burst in New Jersey and several flood records were broken in New Jersey. 8/28/1971 13.46 3,920 Tropical Storm Doria dumped 3 to 7 inches of rain across the region. Localized rainfall amounts of 8 to 10 inches were reported in the Tidewater area, Eastern NJ and Eastern PA. 4/16/2007 13.28 4,050 Two low successive low pressure systems produced rain and snow that caused flooding. Warm temperatures after the passage of the second low led to snowmelt and additional flooding. 7/14/1975 11.71 3,180 A stationary front produced rainfall for the entire area from the 9th through the 16th.
    [Show full text]
  • Hydrology of Tropical Storms Irene and Lee
    Hydrology of Tropical Storms Irene and Lee Britt E. Westergard, Senior Service Hydrologist National Weather Service, Albany, NY with Joseph Villani, Hugh Johnson, Vasil Koleci, Kevin Lipton, George Maglaras, Kimberly McMahon, Timothy Scrom, and Thomas Wasula Photo by Tim Scrom of NWS Lake near Hensonville, Greene County NYSFOLA Meeting May 4, 2012 National Weather Service • High Impact Weather • Warning the U.S. Public • Decision Support Services • Economic Preservation “To provide weather, water, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy.” National Weather Service • 122 Forecast Offices • 13 River Forecast Centers • 9 National Centers, including: • Storm Prediction Center • National Hurricane Center • Hydrometeorological Prediction Center • Climate Prediction Center Local NWS Office • Open 24 x 7 x 365 • Approx. 23 on staff • Meteorologists • Hydrologist • IT/Electronics • Administration Hydrology Topics Tropical Storm Irene Remnants of T.S. Lee • Antecedent conditions • Antecedent conditions • Forecasts / Outlook • Rainfall • Storm Track • Flood magnitude • Rainfall • Operational challenges • Flood magnitude • Storm surge on Hudson • Operational challenges Irene: Antecedent Conditions http://hydrology.princeton.edu/~luo/research/FORECAST/current.php http://www.erh.noaa.gov/mmefs/ Irene: MMEFS Outlook http://www.erh.noaa.gov/mmefs/ Irene: MMEFS Outlook Irene: Forecast Rainfall Aug 27-29, 2011 (HPC) Forecast maximum 9.29 – Actual maximum just over 18 inches! Irene: Hydrologic Forecasts • Flood watch issued at 4:47 am Friday Aug. 26th WIDESPREAD RAINFALL AMOUNTS OF 4 TO 7 INCHES ARE LIKELY. LOCALIZED AMOUNTS OVER THE HIGHER TERRAIN OF THE CATSKILLS...BERKSHIRES...LITCHFIELD HILLS AND GREEN MOUNTAINS COULD REACH 10 INCHES. IF THIS AMOUNT OF RAIN OCCURS MANY MAIN STEM RIVERS WOULD FLOOD.
    [Show full text]
  • Climatology of Tropical Cyclones in New England and Their Impact at the Blue Hill Observatory, 1851-2012
    Climatology of Tropical Cyclones in New England and Their Impact at the Blue Hill Observatory, 1851-2012 Michael J. Iacono Blue Hill Meteorological Observatory Updated September 2013 Introduction Over the past four centuries, extreme hurricanes have occurred in New England at intervals of roughly 150 years, as evidenced by the three powerful storms of 1635, 1815, and 1938. Histories and personal accounts of these infamous hurricanes make for fascinating reading (Ludlum, 1963; Minsinger, 1988), and they serve as an important reminder of the devastating impact that tropical cyclones can have in the Northeast. Most tropical systems in New England are less damaging, but they can still disrupt our daily lives with strong winds, heavy rain, and flooding. This article, which updates an earlier report in the Blue Hill Observatory Bulletin (Iacono, 2001), will describe the climatology of all 250 tropical cyclones that have affected New England since the mid-19th century and will summarize their intensity, frequency, and specific meteorological impact at the Blue Hill Observatory. A hurricane is a self-sustaining atmospheric process in which sunlight, water, and wind combine to transfer energy from the tropics to higher latitudes. The uneven distribution of solar heating at the Earth’s surface ultimately drives much of our weather as the atmosphere continually circulates to equalize the tropical warmth and the polar cold. In the tropics, this process is normally tranquil and slow, brought about through the life cycles of individual thunderstorms, the prevailing winds, and ocean currents. However, under the right conditions very warm air and water in the tropics trigger the formation of the most efficient heat transfer mechanism available to the atmosphere: a hurricane.
    [Show full text]
  • P3.4 the Distribution of Precipitation Over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones
    20th Conf. on Weather Analysis and Forecasting Seattle, WA, 11–15 January 2004 P3.4 The Distribution of Precipitation over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones David P. DeLuca*, Lance F. Bosart, Daniel Keyser University at Albany, State University of New York, Albany, New York and David R. Vallee National Weather Service Forecast Office, Taunton, Massachusetts 1. INTRODUCTION United States. Approximately 3500 surface stations were analyzed for each storm period (currently: 1950– Landfalling and transitioning tropical cyclones 1991) by Ron Horwood of NWS WFO Taunton, MA. pose a significant heavy precipitation forecast challenge Obvious erroneous data were removed to obtain the most over the northeastern United States. The forecast accurate analyses possible. challenge is heightened because the heavy rainfall distribution associated with these tropical cyclones can A subset of eight storms (Fig. 1) where the be modulated significantly when the poleward-moving precipitation distribution is possibly influenced by storms interact with mobile midlatitude upper-level coastal frontogenesis was chosen from well–documented troughs and coastal fronts over regions of complex or famous cases. Detailed analyses were conducted terrain. The purpose of this paper is to document the using the four times daily (0000, 0600, 1200 and 1800 large spatial and temporal variability of heavy UTC) NCEP/NCAR reanalysis dataset (Kalnay et al. precipitation that accompanies landfalling and 1996; Kistler et al. 2001) and archived DIFAX surface transitioning tropical cyclones, and to determine the charts in an attempt to elucidate both synoptic and physical basis for the observed rainfall distribution. mesoscale processes. 2. METHODOLOGY 3. RESULTS A 38-storm dataset (Fig.
    [Show full text]
  • Section 5.4-5.4.2
    SECTION 5.4: RISK ASSESSMENT – HAZARDS PROFILES AND VULNERABILITY ASSESSMENT 5.4 HAZARDS PROFILES AND VULNERABILITY ASSESSMENT The following sections profile and assess vulnerability for each hazard of concern. For each hazard, the profile includes: the hazard description; its location and extent; previous occurrences and losses; and the probability of future events. The vulnerability assessment for each hazard includes: an overview of vulnerability; the data and methodology used; the impact on life, health and safety; impact on general building stock; impact on critical facilities; impact on the economy; additional data needs and next steps; and the overall vulnerability assessment finding. Hazards are presented in hazard priority order, starting with the coastal storm hazard and ending with the earthquake hazard. DMA 2000 Hazard Mitigation Plan – City of New Rochelle, New York 5.4-1 September 2010 SECTION 5.4.1: COASTAL AND SEVERE STORMS 5.4.1 COASTAL AND SEVERE STORMS This section provides a profile and vulnerability assessment for the coastal storm and severe storm hazards. HAZARD PROFILE Hazard profile information is provided in this section, including information on description, extent, location, previous occurrences and losses and the probability of future occurrences within the City of New Rochelle. Description Coastal storms (hurricanes, tropical depressions, tropical storms, and Nor’Easters) are typically events associated with severe storms (hailstorms, windstorms, lightning, thunderstorms and tornadoes). Therefore, for the purpose of this HMP, severe storms and coastal storms are grouped together. Both types of storms affect the City of New Rochelle. Severe Storm The severe storm hazard includes the following types of events: hailstorms, windstorms, lightning, thunderstorms and tornadoes.
    [Show full text]
  • Floods of August and September 1971 in Maryland and Delaware
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY FLOODS OF AUGUST AND SEPTEMBER 1971 IN MARYLAND AND DELAWARE Prepared in cooperation with the MARYLAND STATE HIGHWAY ADMINISTRATION Open-file report Parkville, Maryland 19 7 4 (200) C225f 1974 00} t~5f 7~ · UNITED STATES DEPARTMENT OF THE INTERI OR GEOLOGICAL SURVEY FLOODS OF AUGUST AND SEPTEMBER 1971 IN MARYLAND AND DELAWARE .BY D. H. .-Carpenter Prepared in cooperation with t he MARYLAND STATE HIGHWAY ADMINISTRATION Ope n- file report Parkville, Maryland 1974 CONTENTS Page Abstract . ........................................... 1 In t rod uc ti on . ....................................... 2 Descriptio n of t he s t orms and flooding .............. 7 I sohy e t al maps .. .................................... 12 Flood s t a ges and discharges ....•..................... 13 Re ferences cited..................................... 22 Appe ndix - St at i o n descriptions...................... 23 ILLUSTRATIONS Figure 1. Location map for flood measure ment s ites.. 5 2. I sohye t al map, August 1-2, 1971..... ... ... 9 3. I sohyetal map, August 26-28, 1971......... 10 4. I sohye tal map, September 11-13, 1971...... 11 5 . Relation of peak unit d i scharge t o drain ­ a ge area, floods of Au gus t and September 1971...................................... 21 TABLES Table 1. Flood s t a ges and discharges in Maryland and Delaware.............................. 15 III ABSTRACT Intense rainfall, resulting most l y from severe t hunderstorms in Augus t and September 1971 caused con­ siderable flooding throughout much of Maryland and Delaware. Preci pit ation t ot als of 5 . 47 inches in 3 hours and 12. 6 inches i n 12 hours were reported for t he mo s t severe s t orm of the period whi ch occurred on Aug .
    [Show full text]
  • Virginia HURRICANES by Barbara Mcnaught Watson
    Virginia HURRICANES By Barbara McNaught Watson A hurricane is a large tropical complex of thunderstorms forming spiral bands around an intense low pressure center (the eye). Sustained winds must be at least 75 mph, but may reach over 200 mph in the strongest of these storms. The strong winds drive the ocean's surface, building waves 40 feet high on the open water. As the storm moves into shallower waters, the waves lessen, but water levels rise, bulging up on the storm's front right quadrant in what is called the "storm surge." This is the deadliest part of a hurricane. The storm surge and wind driven waves can devastate a coastline and bring ocean water miles inland. Inland, the hurricane's band of thunderstorms produce torrential rains and sometimes tornadoes. A foot or more of rain may fall in less than a day causing flash floods and mudslides. The rain eventually drains into the large rivers which may still be flooding for days after the storm has passed. The storm's driving winds can topple trees, utility poles, and damage buildings. Communication and electricity is lost for days and roads are impassable due to fallen trees and debris. A tropical storm has winds of 39 to 74 mph. It may or may not develop into a hurricane, or may be a hurricane in its dissipating stage. While a tropical storm does not produce a high storm surge, its thunderstorms can still pack a dangerous and deadly punch. Agnes was only a tropical storm when it dropped torrential rains that lead to devastating floods in Pennsylvania, Maryland, and Virginia.
    [Show full text]
  • Section 1: Introduction
    SECTION 5.2: RISK ASSESSMENT – IDENTIFICATION OF HAZARDS OF CONCERN 5.2 IDENTIFICATION OF NATURAL HAZARDS OF CONCERN To provide a strong foundation for mitigation strategies considered in Section 6.0, Somerset County considered a full range of natural hazards that could Hazards of Concern are defined as those hazards impact the area, and then identified and ranked those hazards that presented the that are considered most greatest concern. The natural hazard of concern identification process likely to impact a incorporated input from the County and participating jurisdictions; review of community. These are the State of New Jersey Hazard Mitigation Plan (NJ HMP) and previous hazard identified using available identification efforts; research and local, state, and federal information on the data and local knowledge. frequency, magnitude, and costs associated with the various hazards that have previously, or could feasibly, impact the region; and qualitative or anecdotal information regarding natural hazards and the perceived vulnerability of the study area’s assets to them. Table 5.2-1 documents the process of identifying the natural hazards of concern for further profiling and evaluation. For the purposes of this planning effort, the Planning Committee chose to group some natural hazards together, based on the similarity of hazard events, their typical concurrence or their impacts, consideration of how hazards have been grouped in Federal Emergency Management Agency (FEMA) guidance documents (FEMA 386-1, “Understanding Your Risks, Identifying Hazards and Estimating Losses; FEMA’s “Multi-Hazard Identification and Risk Assessment – The Cornerstone of the National Mitigation Strategy”), and consideration of hazard grouping in the NJ HMP.
    [Show full text]
  • Floods Caused by Tropical Systems: Assunpink Creek at Trenton, NJ
    Floods Caused by Tropical Systems: Assunpink Creek at Trenton, NJ Latitude: 40.222 Period of Record: 1932-Present Longitude: -74.778 Flood Stage: 8.5 Last Flood: 11/25/2018 Number of Floods: 70 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 8/28/1971 13.46 3,920 Tropical Storm Doria dumped 3 to 7 inches of rain across the region. Localized rainfall amounts of 8 to 10 inches were reported in the Tidewater area, Eastern NJ and Eastern PA. 8/13/1955 9.29 2,400 Hurricane Connie produced 4 to 8 inches of rainfall across the Mid-Atlantic region, with locally heavier amounts exceeding 10 inches. 9/26/1975 8.8 2,020 The remnants of Hurricane Eloise combined with a cold front and produced very heavy rainfall in the Mid- Atlantic. Washington, D.C. reported 9.08" of rainfall. Total damage for Virginia was estimated to be $17.2 million. 8/28/2011 15.12 5,820 Hurricane Irene brought heavy rains and flooding 26-28 August 2011. Area averaged rainfall from gauge and radar data indicated a broad swath of 3 to 10 inches with over 13” at a couple of spots. 10/9/2005 9.88 2,240 Tropical Storm Tammy was absorbed into a cold front and produced 2-day rainfall totals of 4 to 7 inches. Flooding was reported in the Raritan, Passaic, Delaware and Lower Main Stem Susquehanna Basins. 9/22/1938 10.74 3,320 The Long Island Express Hurricane produced more than 5 inches of rain in New Jersey, New York and other parts of the Northeast.
    [Show full text]
  • Features Departments
    Emergency Manager & Storm Spotter Magazine Fall, 2011 - VOL. 16, NO.4 Evan L. Heller, Editor Steve DiRienzo, Publisher Ingrid Amberger, Webmistress IRENE INUNDATES OUR REGION… FEATURES WITH DESTRUCTION 1 Irene Inundates Our Region…With Destruction Hugh Johnson A local look into this blockbuster Hurricane! Meteorologist, NWS Albany /By Hugh Johnson It’s been more than a decade since our region 2 September EF1 Tornado Strikes East Central was directly impacted by a Tropical Storm. Our area has New York often felt the indirect impact of tropical systems, even as Examining this rare tornado event ! recently as last year, with the remnants of Nicole /By Thomas A. Wasula bringing over half a foot of rain to portions of the region. However, our last direct hit from a Tropical Storm was 4 Summer of 2011 To Be Remembered For Both by Floyd back in September 1999. That storm brought a Heat And Lots of Rain quick end to a drought that summer, and produced All the heat…all the rain…all the numbers! moderate to major flooding to many of our watersheds, /By Evan L. Heller with 6 to 12 inches of rainfall. While the tropical season had been active this 6 Jack Evans Honored As 2010 Holm Award year, it was only the ninth tropical system that was the Winner first to strengthen into a hurricane. That storm was NWS honors a long-time Cooperative Weather Observer! Irene, which had been a well-defined tropical wave that /By Aula Evans DeWitt and Timothy E. Scrom formed off Cape Verde on August 15th and headed west.
    [Show full text]
  • Chapter 2.1-A Brief History of Maryland's Coastal Bays
    Maryland’s Coastal Bays: Ecosystem Health Assessment Chapter 2.1 Chapter 2.1 A Brief History of Maryland’s Coastal Bays From: Hall, M. J. Casey and D. Wells. A Brief History of Maryland’s Coastal Bays. In: Maryland’s Coastal Bays: Ecosystem Health Assessment. Updated timeline and revised narrative authored by: Catherine Wazniak Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 Roman Jesien Maryland Coastal Bays Program, Berlin, MD 21801 Abstract From the early native Americans who hunted and fished the creeks and began to farm the lands, to the Europeans who settled later, to pirates and smugglers looking for hideouts among the perplexing coves and thick marshes, to most recently, the retirees and vacationers in search of more genteel escapes, Maryland’s Coastal Bays have beckoned with abundant natural scenery and resources. The human population has gradually risen and, along with natural fluctuations, has promoted change as a common theme within the Coastal Bays ecosystem. Storms come and go, battering the islands and blasting inlets for Atlantic waters, which, if not stabilized, are soon closed by sandy sediments. Stocks of fish and shellfish fluctuate, forcing the waterman and recreational angler alike to be flexible. Other natural factors also constantly change. Eelgrass thrived prior to 1930, only to be reduced by a mysterious wasting disease and then returned years later. Shorelines crumble under the unrelenting force of wind and wave, often returning as shoals far from their origin. Algal populations, microscopic cells drifting unnoticed most of the time, can swell in blooms so massive as to change the clarity and color of the water in every direction.
    [Show full text]
  • Appendix H: 2007 HMP Hazard Events
    Appendix H: 2007 HMP Hazard Events This appendix includes the hazard event tables that were found in the 2007 Suffolk County HMP. These tables include events that occurred in the County through 2007. DMA 2000 Hazard Mitigation Plan Update – Suffolk County, New York H-1 April 2014 Appendix H: 2007 HMP Hazard Events Table H-1. Coastal Erosion Events FEMA Declaration Suffolk County Dates of Event Event Type Number Designated? Losses / Impacts September 22- 23, 1815 Severe Storm N/A N/A Many structures damaged including Montauk Lighthouse, major erosion October 29, 1893 Severe Storm N/A N/A During “The Great Storm of 1893”, Fire Island Cut broken through October 24, 1897 Nor’easter N/A N/A Separated Orient Village from the North Fork March 4, 1931 Nor’Easter N/A N/A Created Moriches Inlet, severe beach erosion and structural damage September 21, 1938 Hurricane N/A N/A “Long Island Express” or “Great Hurricane of ‘38” caused approximately $6.2 M, multiple deaths, Shinnecock Inlet created, Moriches Inlet widened by over 4,000 feet. More then 200 homes had been perched on dunes 20-feet high, destroyed fishing industry, created 12 new inlets. The storm produced winds that reached 200 miles per hour (mph), generated 5-meter-high breakers, overwashed 1/3 to 1/2 of Long Island, and created approximately 12 new inlets. altered natural coastline erosion responses from future storms (Mandia, 1992). September 14, 1944 Hurricane N/A N/A The “Great Atlantic Hurricane” storm center crossed the eastern portion of Long Island during a falling tide.
    [Show full text]