ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Supplementum 11 (2007)

Total Page:16

File Type:pdf, Size:1020Kb

ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Supplementum 11 (2007) AACTACTA EENTOMOLOGICANTOMOLOGICA MUSEI NATIONALIS PRAGAE Petr Bogusch, Annotated checklist Jakub Straka of the Aculeata (Hymenoptera) & Petr Kment of the Czech Republic (editors) and Slovakia Komentovaný seznam žahadlových blanokřídlých SUPPLEMENTUM 11 (Hymenoptera: Aculeata) České republiky 2007 a Slovenska www.nm.cz NATIONAL MUSEUM, P R A G U E ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Supplementum 11 (2007) Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia Komentovaný seznam žahadlových blanokřídlých (Hymenoptera: Aculeata) České republiky a Slovenska Edited by: BOGUSCH P., STRAKA J. & KMENT P. ISSN 0231-8571 © Národní muzeum, Praha – 2007 ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Supplementum 11 (2007) Chairman of the editorial board: Josef Jelínek (Czech Republic) Editor-in-chief: Petr Kment (Czech Republic) Technical editor: Martin Fikáček (Czech Republic) English language editors: Lubomír Masner (Canada) Nicole Černohorská (Czech Republic) Advisory board: Jan Bezděk (Czech Republic) Vítězslav Kubáň (Czech Republic) David S. Boukal (Norway) Jan Macek (Czech Republic) Freddy Bravo (Brazil) Wolfram Mey (Germany) Vladimir Gnezdilov (Russia) Carl W. Schaefer (USA) Jiří Hájek (Czech Republic) Aleš Smetana (Canada) Petr Kočárek (Czech Republic) Pavel Štys (Czech Republic) František Krampl (Czech Republic) Manuscripts should be sent to: AEMNP journal offi ce, Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic. E-mail: [email protected]. Published occasionally by the National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic. Distributed by the Department of Entomology, National Museum, Praha. Journal web page : http://www.nm.cz/publikace/acta.php. Indexed in Entomology Abstracts, Zoological Records. Date of issue of this volume: November 16, 2007 ISSN 0231-8571 This issue was published with fi nancial support provided by: Charles University in Prague, Faculty of Science (grant MSM0021620828) Český literární fond Foundation, Prague Cover: Coelioxys alata Förster, 1853 (Apoidea: Megachilidae). Orig. P. Bogusch. Contents / Obsah Introduction / Úvod. ........................................................................................... 1 BOGUSCH P., STRAKA J. & KMENT P. Chrysidoidea: Bethylidae (hbitěnkovití). ......................................................... 21 MACEK J., STREJČEK J. & STRAKA J. Chrysidoidea: Chrysididae (zlatěnkovití). ....................................................... 41 TYRNER P. Chrysidoidea: Dryinidae (lapkovití) and Embolemidae (vejřenkovití). .......... 65 MACEK J. Vespoidea: Tiphiidae (trněnkovití). .................................................................. 85 BOGUSCH P. Vespoidea: Mutillidae (kodulkovití). ............................................................... 93 BOGUSCH P. Vespoidea: Sapygidae (drvenkovití). ............................................................. 105 BOGUSCH P. Vespoidea: Pompilidae (hrabalkovití). ........................................................... 111 STRAKA J. Vespoidea: Formicidae (mravencovití). ......................................................... 133 WERNER P. & WIEZIK M. Vespoidea: Scoliidae (žahalkovití). ................................................................ 165 BOGUSCH P. Vespoidea: Vespidae (vosovití). ..................................................................... 171 DVOŘÁK L. & STRAKA J. Apoidea: Spheciformes (kutilky). .................................................................. 191 VEPŘEK D. & STRAKA J. Apoidea: Apiformes (včely). .......................................................................... 241 STRAKA J., BOGUSCH P. & PŘIDAL A. Back issues / Nabídka předchozích svazků. .................................................. 300 Should be cited as follows / Doporučená citace: Book / Celý sborník: BOGUSCH P., STRAKA J. & KMENT P. (eds.) 2007: Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia. Komentovaný seznam žahadlových blanokřídlých (Hymenoptera: Aculeata) České republiky a Slovenska. Acta Entomologica Musei Nationalis Pragae, Supplementum 11: 1-300 (in English and Czech). Chapter / Kapitola: WERNER P. & WIEZIK M. 2007: Vespoidea: Formicidae (mravencovití). Pp. 133-164. In: BOGUSCH P., STRAKA J. & KMENT P. (eds.): Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia. Komentovaný seznam žahadlových blanokřídlých (Hymenoptera: Aculeata) České republiky a Slovenska. Acta Entomologica Musei Nationalis Pragae, Supplementum 11: 1-300 (in English and Czech). ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 16.xi.2007 Supplementum 11, pp. 1-20 ISSN 0231-8571 Introduction / Úvod Petr BOGUSCH1), Jakub STRAKA2) & Petr KMENT3,2) 1) Department of Biology, University of Hradec Králové, Rokitanského 62, CZ-500 03 Hradec Králové, Czech Republic; e-mail: [email protected] 2) Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-128 44 Praha 2, Czech Republic; e-mail: [email protected] 3) Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: [email protected] Abstract. This chapter is an introduction to the annotated checklist of the Acu- leata (Hymenoptera) of the Czech Republic and Slovakia. It summarizes the basic information about the phylogenetic position of Aculeata and relationships among particular families, delimitation of the studied area, brief account of the research history, and some introductory words about this checklist. The numbers of species of particular families known from the Czech Republic (1343 species in total), its historical parts (Bohemia – 1098 species, Moravia – 1279 species), and Slovakia (1453 species) are summarized in a table, and compared with former lists. Key words. Hymenoptera, Aculeata, checklist, phylogeny, zoogeography, history of research, Czech Republic, Bohemia, Moravia, Slovakia The order Hymenoptera is among the most Řád blanokřídlí (Hymenoptera) patří speciose groups of insect worldwide. This mezi nejpočetnější skupiny hmyzu nejen order contains ca. 13 % of all described insect celosvětově (13 % popsaných druhů hmyzu), species. In the Czech Republic and Slovakia, ale i v rámci České republiky a Slovenska approximately 7,500 species of Hymenoptera (okolo 7 500 druhů), kde o prvenství v počtu have been recorded so far. Similar amount of dosud známých druhů soutěží blanokřídlí species is known from our country only within pouze s brouky (Coleoptera) a dvoukřídlými the orders Coleoptera and Diptera. Although (Diptera). Ačkoliv se jedná o velice diverzi- Hymenoptera are very much diversifi ed, they fi kovanou skupinu, nepatří zástupci tohoto cannot be interpreted as a popular and well řádu mezi nejstudovanější hmyzí skupiny, studied group by the researchers, especially což se týká i Českých zemí a Slovenska. in our country. Only several groups have been To se samozřejmě netýká včely medonos- studied more extensively. The main focus is né (Apis mellifera Linnaeus, 1758), která the honeybee (Apis mellifera Linnaeus, 1758) patří mezi užitkové druhy hmyzu. K vše- BOGUSCH P., STRAKA J. & KMENT P. (eds.) 2007: Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia. Komentovaný seznam žahadlových blanokřídlých (Hymenoptera: Aculeata) České republiky a Slovenska. 300 pp. 2 BOGUSCH, STRAKA & KMENT: Introduction / Úvod classifi ed as an animal kept by people for obecně známým skupinám můžeme zařadit honey, wax, etc. Next, some social groups are i mravence (Formicidae), čmeláky (Bombus generally popular (e.g. ants (Formicidae) and spp.), a některé zástupce čeledi vosovitých bumblebees (Bombus spp.)) or unpopular (e.g. (Vespidae). Naproti tomu zástupci skupin hornets and wasps (Vespinae)) for people, and s četnými malými druhy, zejména nadčeledí thus better known than the others. The opposi- vejřitek (Proctotrupoidea), chalcidek (Chal- te situation is in numerous groups of small, cidoidea) a početných lumků (Ichneumono- usually parasitic hymenopterans, especially idea), byli u nás studováni jen zřídka. Zatímco superfamilies Proctotrupoidea and Chalci- v jiných zemích, třeba ve Spojených státech doidea, and the most numerous group within nebo v Japonsku, patří chalcidky a samotářské Hymenoptera – ichneumonids (Ichneumono- včely mezi oblíbené a často studované sku- idea). Although both solitary bees and proc- piny hmyzu, v našich podmínkách se těmito totrupoids have been intensively studied for skupinami ještě před zhruba deseti lety téměř many years, e.g. in the USA or Japan, Czech nikdo nezabýval. Dokonce i společenské vosy species were largely unknown only several (Vespinae) byly u nás vždy na okraji zájmu years ago. Even the social wasps (Vespinae) badatelů, a proto biologie i ekologické nároky have been studied only beside other related těchto (i pro člověka) významných zástupců groups and now we are only experiencing hmyzu zůstávají jen málo známé. ecological demands and bionomics both of common and rare representants of this for all people ‘well known’ group. Phylogeny of the Aculeata Fylogeneze žahadlových blanokřídlých (Aculeata) The Aculeata is a group of hymenopterous Žahadloví blanokřídlí (Aculeata) jsou insects, easily defi ned by their characteristic díky specifi ckému utváření kladélka dobře modifi cation of the ovipositor. It serves as a defi novanou skupinou hmyzu. Spíše než jako stinging apparatus connected with venomous aparát na kladení vajíček, slouží kladélko této gland, rather than an apparatus
Recommended publications
  • Functional Morphology and Evolution of the Sting Sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Kumpanenko Alexander, Gladun Dmytro, Vilhelmsen Lars Artikel/Article: Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 1 1 2 Alexander Kumpanenko* , Dmytro Gladun & Lars Vilhelmsen 1 Institute for Evolutionary Ecology NAS Ukraine, 03143, Kyiv, 37 Lebedeva str., Ukraine; Alexander Kumpanenko* [[email protected]]; Dmytro Gladun [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitet- sparken 15, DK-2100, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted on June 28, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Christian Schmidt & Klaus-Dieter Klass. Abstract. The sting of the Aculeata or stinging wasps is a modifed ovipositor; its function (killing or paralyzing prey, defense against predators) and the associated anatomical changes are apomorphic for Aculeata. The change in the purpose of the ovipositor/sting from being primarily an egg laying device to being primarily a weapon has resulted in modifcation of its handling that is supported by specifc morphological adaptations. Here, we focus on the sheaths of the sting (3rd valvulae = gonoplacs) in Aculeata, which do not penetrate and envenom the prey but are responsible for cleaning the ovipositor proper and protecting it from damage, identifcation of the substrate for stinging, and, in some taxa, contain glands that produce alarm pheromones.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116
    ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116 Journal Homepage: - www.journalijar.com Article DOI: Article DOI: 10.21474/IJAR01/1427 DOI URL: http://dx.doi.org/10.21474/IJAR01/1427 RESEARCH ARTICLE INSECT PESTS OF FORESTRY PLANTS AND THEIR MANAGEMENT. Meeta Sharma Arid Forest Research Institute, Jodhpur (Rajasthan)-342005. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Indian arid zone covers 31.7 million ha hot desert and 0.78 million ha cold desert, which is about 12 percent of the country‟s total Received: 12 June 2016 geographical area. The mean annual rainfall in the region varies from Final Accepted: 19 July 2016 100 mm in the north- western sector of Jaisalmer to 550 mm in eastern Published: August 2016 districts of Rajasthan, Gujarat and Haryana. The rainfall is highly erratic having 65 percent coefficient of variability. The vegetation in Key words:- the Indian arid zone is very sparse , scanty and thorny. However, the Forest, Bruchid, Parasitoid.. forests and trees like many other plants, suffer from attack by insect pests and diseases which cause a lot of damage, resulting in poor tree growth, poor timber quality, and in some cases, complete destruction and reduction of forest cover in Indian arid zone also. Thus, trees and forests need to be protected from these agents of destruction. With the ever increasing human and livestock population, the amount of forest per capita is declining particularly in the less industrialized or developing areas of the world. It is estimated that the land under forest in developing countries is about 2100 million hectares, or more than half of the forested land on earth.
    [Show full text]
  • Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
    Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no.
    [Show full text]
  • Chapter 15. Central and Eastern Africa: Overview
    Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent.
    [Show full text]
  • Grape Insects +6134
    Ann. Rev. Entomo! 1976. 22:355-76 Copyright © 1976 by Annual Reviews Inc. All rights reserved GRAPE INSECTS +6134 Alexandre Bournier Chaire de Zoologie, Ecole Nationale Superieure Agronornique, 9 Place Viala, 34060 Montpellier-Cedex, France The world's vineyards cover 10 million hectares and produce 250 million hectolitres of wine, 70 million hundredweight of table grapes, 9 million hundredweight of dried grapes, and 2.5 million hundredweight of concentrate. Thus, both in terms of quantities produced and the value of its products, the vine constitutes a particularly important cultivation. THE HOST PLANT AND ITS CULTIVATION The original area of distribution of the genus Vitis was broken up by the separation of the continents; although numerous species developed, Vitis vinifera has been cultivated from the beginning for its fruit and wine producing qualities (43, 75, 184). This cultivation commenced in Transcaucasia about 6000 B.C. Subsequent human migration spread its cultivation, at firstaround the Mediterranean coast; the Roman conquest led to the plant's progressive establishment in Europe, almost to its present extent. Much later, the WesternEuropeans planted the grape vine wherever cultiva­ tion was possible, i.e. throughout the temperate and warm temperate regions of the by NORTH CAROLINA STATE UNIVERSITY on 02/01/10. For personal use only. world: North America, particularly California;South America,North Africa, South Annu. Rev. Entomol. 1977.22:355-376. Downloaded from arjournals.annualreviews.org Africa, Australia, etc. Since the commencement of vine cultivation, man has attempted to increase its production, both in terms of quality and quantity, by various means including selection of mutations or hybridization.
    [Show full text]
  • Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia
    Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia Scott Russell Spencer Entomological Collection Beaty Biodiversity Museum, UBC Vancouver, B.C. The family Pompilidae is a cosmopolitan group of some 5000 species of wasps which prey almost exclusively on spiders, giving rise to their common name - the spider wasps. While morphologically monotonous (Evans 1951b), these species range in size from a few millimetres long to among the largest of all hymenopterans; genus Pepsis, the tarantula hawks may reach up to 64 mm long in some tropical species (Vardy 2000). B.C.'s largest pompilid, Calopompilus pyrrhomelas, reaches a more modest body length of 19 mm among specimens held in our collection. In North America, pompilids are known primarily from hot, arid areas, although some species are known from the Yukon Territories and at least one species can overwinter above the snowline in the Colorado mountains (Evans 1997). In most species, the females hunt, attack, and paralyse spiders before laying one egg on (or more rarely, inside) the spider. Prey preferences in Pompilidae are generally based on size, but some groups are known to specialize, such as genus Ageniella on jumping spiders (Araneae: Salticidae) and Tachypompilus on wolf spiders (Araneae: Lycosidae) (Evans 1953). The paralysed host is then deposited in a burrow, which may have been appropriated from the spider, but is typically prepared before hunting from existing structures such as natural crevices, beetle tunnels, or cells belonging to other solitary wasps. While most pompilids follow this general pattern of behaviour, in the Nearctic region wasps of the genus Evagetes and the subfamily Ceropalinae exhibit cleptoparasitism (Evans 1953).
    [Show full text]
  • JNCC Coastal Directories Project Team
    Coasts and seas of the United Kingdom Region 11 The Western Approaches: Falmouth Bay to Kenfig edited by J.H. Barne, C.F. Robson, S.S. Kaznowska, J.P. Doody, N.C. Davidson & A.L. Buck Joint Nature Conservation Committee Monkstone House, City Road Peterborough PE1 1JY UK ©JNCC 1996 This volume has been produced by the Coastal Directories Project of the JNCC on behalf of the project Steering Group and supported by WWF-UK. JNCC Coastal Directories Project Team Project directors Dr J.P. Doody, Dr N.C. Davidson Project management and co-ordination J.H. Barne, C.F. Robson Editing and publication S.S. Kaznowska, J.C. Brooksbank, A.L. Buck Administration & editorial assistance C.A. Smith, R. Keddie, J. Plaza, S. Palasiuk, N.M. Stevenson The project receives guidance from a Steering Group which has more than 200 members. More detailed information and advice came from the members of the Core Steering Group, which is composed as follows: Dr J.M. Baxter Scottish Natural Heritage R.J. Bleakley Department of the Environment, Northern Ireland R. Bradley The Association of Sea Fisheries Committees of England and Wales Dr J.P. Doody Joint Nature Conservation Committee B. Empson Environment Agency Dr K. Hiscock Joint Nature Conservation Committee C. Gilbert Kent County Council & National Coasts and Estuaries Advisory Group Prof. S.J. Lockwood MAFF Directorate of Fisheries Research C.R. Macduff-Duncan Esso UK (on behalf of the UK Offshore Operators Association) Dr D.J. Murison Scottish Office Agriculture, Environment & Fisheries Department Dr H.J. Prosser Welsh Office Dr J.S.
    [Show full text]
  • Bioreplicated Visual Features of Nanofabricated Buprestid Beetle Decoys Evoke Stereotypical Male Mating Flights
    Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights Michael J. Dominguea,1, Akhlesh Lakhtakiab, Drew P. Pulsiferb, Loyal P. Halla, John V. Baddingc, Jesse L. Bischofc, Raúl J. Martín-Palmad, Zoltán Imreie, Gergely Janikf, Victor C. Mastrog, Missy Hazenh, and Thomas C. Bakera,1 Departments of aEntomology, bEngineering Science and Mechanics, cChemistry, and dMaterials Science and Engineering, Pennsylvania State University, University Park, PA 16802; ePlant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-3232 Budapest, Hungary; fDepartment of Forest Protection, Forest Research Institute, H-1022 Mátrafüred, Hungary; gAnimal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, US Department of Agriculture, Buzzards Bay, MA 02542; and hHuck Institutes of the Life Sciences Microscope Facilities, Pennsylvania State University, University Park, PA 16802 Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved August 19, 2014 (received for review July 7, 2014) Recent advances in nanoscale bioreplication processes present the and detection of pest species, but the communication efficacy of potential for novel basic and applied research into organismal the bioreplica needs to be validated under field conditions using behavioral processes. Insect behavior potentially could be affected naturally occurring (i.e., wild) populations. by physical features existing at the nanoscale level. We used nano- In contrast, biomimicry of chemical signals, such as insect pher- bioreplicated visual decoys of female emerald ash borer beetles omones, has been a burgeoning field for more than half a century. (Agrilus planipennis) to evoke stereotypical mate-finding behav- Synthetically reproduced pheromones have been successfully ap- ior, whereby males fly to and alight on the decoys as they would plied under field conditions to manipulate insect behavior for in- on real females.
    [Show full text]
  • Influence of Wheat Cultivar, Temperature, and Theocolax
    INFLUENCE OF WHEAT CULTIVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT BY MICHAEL D. TOEWS Bachelor ofScience Fort Hays State University Hays, Kansas 1995 Submitted to the Faculty ofthe Graduate College ofthe Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May 1998 INFLUENCE OF WHEAT CULTrVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT Thesis Approved: ~~~ ~JJ.~D~~_ /~,) 6L~fN-r , ean ofthe Graduate College n PREFACE The first chapter ofthis thesis is a literature review focused on issues in stored wheat. Also induded in chapter one is a review ofthe lesser grain borer, the parasitoid Theocolax elegans, and interactions among the trophic levels in my research. Subsequent chapters are formal papers representing my M.S. research project and are written in compliance with the publication policies and guidelines for manuscript preparation with the Entomological Society ofAmerica. The completion ofthis degree would not have been possible without the guidance ofmany people. I would like to express my sincere appreciation to my graduate advisor, Dr. Gemt Cuperus, for his assistance and direction. My co-advisor, Dr. Tom Phillips, provided a great deal ofpractical assistance and advice while also housing me in his laboratory space. This research project greatly benefited from the insight offered by Dr. Richard Berberet and Dr. Phillip Mulder. Special appreciation is directed toward Dr. Mark Payton who answered many questions and assisted me with the design and analysis of each experiment. I wish to extend special thanks to Edmond Bonjour for his proofreading and example throughout all phases ofmy degree.
    [Show full text]
  • Updated Checklist of Vespidae (Hymenoptera: Vespoidea) in Iran
    J Insect Biodivers Syst 06(1): 27–86 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Monograph http://jibs.modares.ac.ir http://zoobank.org/References/084E3072-A417-4949-9826-FB78E91A3F61 Updated Checklist of Vespidae (Hymenoptera: Vespoidea) in Iran Zahra Rahmani1, Ehsan Rakhshani1* & James Michael Carpenter2 1 Department of Plant Protection, College of Agriculture, University of Zabol, P.O. Box 98615-538, I.R. Iran. 2 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA. ABSTRACT. 231 species of the family Vespidae (Hymenoptera, Vespoidea) of Iran, in 55 genera belonging to 4 subfamilies Eumeninae (45 genera, 184 species), Masarinae (5 genera, 24 species), Polistinae (2 genera, 17 species) and Vespinae (3 genera, 6 species) are listed. An overall assessment of the distribution pattern of the vespid species in Iran indicates a complex fauna of different biogeographic regions. 111 species are found in both Eastern and Western Palaearctic regions, while 67 species were found only in the Eastern Palaearctic region. Few species (14 species – 6.1%) of various genera are known as elements of central and western Asian area and their area of distribution is not known in Europe (West Palaearctic) and in the Far East. The species that were found both in the Oriental and Afrotropical Regions comprises 11.7 and 15.6% the Iranian vespid fauna, respectively. Many species (48, 20.8%) are exclusively recorded from Iran and as yet there is no record of Received: these species from other countries. The highest percentage of the vespid 01 January, 2020 species are recorded from Sistan-o Baluchestan (42 species, 18.2%), Alborz (42 Accepted: species, 18.2%), Fars (39 species, 16.9%) and Tehran provinces (38 Species 17 January, 2020 16.5%), representing the fauna of the Southeastern, North- and South Central Published: of the country.
    [Show full text]
  • And Cephalonomia Tarsalis (Ashmead) (Hymenoptera: Bethylidae) in Biological Control of Stored Grain Pests
    Plant Protect. Sci. Vol. 39, No. 1: 29–34 Compatibility of Cheyletus eruditus (Schrank) (Acari: Cheyletidae) and Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) in Biological Control of Stored Grain Pests E�� ŽĎÁRKOVÁ, J�� LUKÁŠ and P���� HORÁK Department of Stored-Product Pest Control, Research Institute of Crop Production, Prague-Ruzyně, Czech Republic Abstract Ž������� E., L���� J., H���� P. (2003): Compatibility of Cheyletus eruditus (Schrank) (Acari: Cheyletidae) and Ce- phalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) in biological control of stored grain pests. Plant Protect. Sci., 38: 29–34. A laboratory experiment was carried out on stored wheat infested by the stored product mite Acarus siro and beetle Oryzaephilus surinamensis. The initial infestation was 150 mites of A. siro and 15 beetles of O. surinamensis per 1 kg of wheat. The predatory mite Cheyletus eruditus and parasitoid Cephalonomia tarsalis were added in the ratio 1:20 and 1:12, repectively. Three combinations were tested: (1) mites and (2) beetles separately, and (3) mites and beetles together. The experiment ran for three months at 22°C and 75% RH. The pests were suppressed by their antagonists in all combinations. Synchronous application of both natural enemies resulted in better control of O. surinamensis through an enhanced effect of both antagonists. Keywords: Acarus siro; Oryzaephilus surinamensis; Cheyletus eruditus; Cephalonomia tarsalis; stored wheat; biological control Increasing demand by consumers on food quality The biological control of stored product mites and safety is reflected in changes of the protection by the predatory mite Cheyletus eruditus Schrank measures used on stored products. The use of pes- is well known and it is used in practice preven- ticides is minimised to an essential level, while that tively and repressively (Ž������� 1998; Ž������� of alternative protective methods is maximised.
    [Show full text]
  • Hymenoptera, Vespidae) in South-Eastern Iran
    J Insect Biodivers Syst 05(4): 393–398 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/7BACFB23-70D8-48EF-A6A9-7B08C91445F3 A contribution to the study of Eumeninae (Hymenoptera, Vespidae) in South-Eastern Iran Fatemeh Hamzavi1*, James Michael Carpenter2 & Ting-Jing Li3 1 Department of Entomology, Faculty of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran. 2 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA. 3 Institute of Entomology & Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China. ABSTRACT. In this study thirteen species of subfamily Eumeninae are recorded from the Sistan-o Baluchestan province (South East of Iran). Among the studied material, five species including Cyrtolabulus karachiensis Gusenleitner, 2006; Cyrtolabulus syriacus (Giordani Soika, 1968); Stenancistrocerus biblicus (Giordani Soika, 1952); Stenodynerus trotzinai Received: 02 November, 2019 (Morawitz, 1895) and Tachyancistrocerus quabosi Giordani Soika, 1979 are recorded for the first time from Iran. Stenancistrocerus biblicus also represents a Accepted: new generic record for the faun of Iran. 21 December, 2019 Published: 29 December, 2019 Subject Editor: Ehsan Rakhshani Key words: Potter wasps, fauna, new records, Sistan-o Baluchestan Citation: Hamzavi, F., Carpenter, J. M. & Ting-Jing, L. (2019) A contribution to the study of Eumeninae (Hymenoptera, Vespidae) in South-Eastern Iran. Journal of Insect Biodiversity and Systematics, 5 (4), 393–398. Introduction Vespidae, with more than 5000 species and the largest and most diverse group within 250 genera within the six subfamilies, is Vespidae, with 3579 described species in one of the largest families among aculeate 210 genera distributed in all Hymenoptera.
    [Show full text]