A Adaptive Red–Blue-Ratio Threshold Detector, 590 Aedes (Stegomyia) Aegypti, Yellow Fever Mosquito Chemical Cues, Breeding

Total Page:16

File Type:pdf, Size:1020Kb

A Adaptive Red–Blue-Ratio Threshold Detector, 590 Aedes (Stegomyia) Aegypti, Yellow Fever Mosquito Chemical Cues, Breeding Index A urodeles and gymnophiones, 250 Adaptive red–blue-ratio threshold detector, visual hunters, 250 590 Analysers, polarization Aedes (Stegomyia) aegypti, yellow fever in Drosophila, 6–7 mosquito electric (E-) vector, 5 chemical cues, breeding habitats, 114, 135 extraretinal polarization analysers, 8 dengue and yellow fever, transmission, 135 in invertebrates, 9 dual-choice experiment, 135, 137 photoreceptor cell (R8), 8 imaging polarimetry, 135, 138 polarization sensitivities, 6 masked polarisation sensitivity, 139 rhabdomeric photoreceptors, 5–6 mosquito ecology, 139 rhodopsin molecules, 7 oviposition sites, 140, 521 twisted photoreceptors, 7–8 polarisation sensitivity in eyes, 139 Anterior optic tubercle (AOTu), insect brains rinsed and non-rinsed choice experiments, degree of polarization, 86 139 E-vector tuning, 85–86 skylight-polarisation compass, 140 intertubercle neurons, 83 All Sky Imager (ASI), 587–589 lateral accessory lobes (LALs), 82 Amphibians, PS locust (LoTu1 and TuTu1 cells), 83–84 breeding sites, 250–251 polarization-sensitive neurons, 82–83 brightness pattern, polarized light, 256 polarized-light responses, 84 celestial cues, 255 stimulus intensity, 85 colour vs. polarization vision, butterflies, TuLAL neurons, 83 257 unpolarized skylight cues, 87–88 emigration orientations, 254 Anthropogenic polarization magnetoreception, 258–260 animal movement, 444 Notophthalmus viridescens, 255–256 aquatic insects associated with water, photoreception, 251–253 445, 447, 448 pineal complex, 253–254 artificial surfaces, 451–452 prey organisms, 256 asphalt surfaces (see Asphalt surfaces) Rana arvalis, 250, 251 astronomical light pollution, 444 Rana pipiens and Rhinella arenarum, 254 attraction/repulsion, animals, 444 ‘redundant-multisensory system’, 254 black burnt-up stubble fields, 503–505 reproductive strategies, eggs, 250 bridges (see Bridges (optical barriers), vs. reptiles, 272 mayflies) training and testing tanks, 255 characteristics, 444 Triturus alpestris, 257 conventional photopollution, 448–449 G. Horva´th (ed.), Polarized Light and Polarization Vision in Animal Sciences, 637 Springer Series in Vision Research 2, DOI 10.1007/978-3-642-54718-8, © Springer-Verlag Berlin Heidelberg 2014 638 Index Anthropogenic polarization (cont.) homing ants, compound eyes and ocelli, 47 daytime and moonlight/citylight, 451 Lasius niger ants, 44 dragonflies (see Dragonflies) Melophorus bagoti, Australian desert ant, generalization and extension, 453 46, 47 horizontal plastic sheets (see Horizontal Myrmecia pyriformis, 46, 47, 55–56 plastic sheets) Myrmica ruginodis,44 light pollution, 444 ocelli, 52–56 linear polarization patterns and angle, water ommatidia, compound eyes, 4 surface, 444, 446 Polyergus rufescens, slave-making mass-swarming caddisflies and mayflies, ants, 46 473–477 skylight polarisation, 44–45 mayflies, 444, 445 Aquatic insects natural and artificial polarizers, 448 desert locusts hinders, Schistocerca non-metallic surface, 444, 446 gregaria, 141 Notonecta, 445 dragonflies, mayflies and tabanid flies paintwork attracting insects artificial surfaces, 128 black car, 494 bright water bodies, 130–131 Ephemeroptera and Odonata females, celestial polarisation pattern, 130 491 horizontal polarisation of light, 127–128 red-blind polarotactic water insects, 494 reflection-polarisation characteristics, red cars, 491, 493, 496 128–129 reflection, metallized and species-specific values, 128 non-metallized paints, 495 ventral polarisation sensitivity, solar position, white cars, 493 threshold, 128–130 visual deception, water insects, egg-laying yellow fever mosquitoes 496–497 A. aegypti (see Aedes (Stegomyia) yellow car, 495 aegypti, yellow fever mosquito) positive polarotaxis, 445 chemical cues, 135 predators feeding, polarotactic insects, 450 pentatonic and tridecanoid carboxylic reflection-polarization characteristics, acids, 134–135 water bodies, 446–448 polarisation sundial (see Polarisation urban birds, 485–487 sundial theory) vertical glass surfaces polarotaxis, 125–127, 131–132 caddisflies, 482–484 ASI. See All Sky Imager (ASI) flying polarotactic insects, 480, 482 Asphalt surfaces ‘greenest’ buildings, 484–485 horizontally polarized light ventral eye region, insect landed on polarotactic water insects, 459 glass, 483, 484 reflections, solar directions, 458, 459 vertical reflectors skylight/sunlight reflection, dry asphalt Brewster zone, 478 road, 458, 460 characteristics, 477 insects attraction, roads degree of linear and angle polarization, aquatic, 454 448, 479 behaviour, 455 dorsoventral symmetry axis, 478, 480 eggs laid, 455 Hydropsyche pellucidula, 477 mayflies swarming, 454, 455 skylit and sunlit, 478 stoneflies, 455 white glass surface, overcast sky, 480, reduction 482 materials, rough surface creation, 459 water-reflected light, 445 shiny dark surface, 460 Ants. See also Hymenopteran insects white-striated appearance, 456, 459 Cataglyphis ants, 11–12 white stripes painted, 460 compass behaviour, polarization, 10 reflection-polarization patterns, 455–458 DRA, 48–52 Azimuth compensation, insect brain, 100, Formica rufa, experiments, 44–45 103–104 Index 639 B BL law. See Beer–Lambert’s (BL) law Ball-rolling dung beetles Boehm’s brush, 312, 313 during day Bridges (optical barriers), mayflies celestial compass cues, 30 behaviour, females, 499–500 skylight cues, 30 biodiversity, 498 sun, primary cue for orientation, 32 downstream and upstream side, 501, 502 food transport, 28, 29 energy content, 500–501 morphology and physiology female larvae, 499 dorsal and ventral eyes, 34 laying eggs, 503 DRA, 35–36 linear polarization and areas, water, 501 photon arrival on retina, 36 male nymphs, P. longicauda, 499 photoreceptors, celestial polarization mass swarmings, 499 analysis, 34, 36 natural dispersal processes, insects, Scarabaeus deludens and Scarabaeus 498–499 goryi,37 riparian habitats, 503 Scarabaeus zambesianus,34 sex-ratio, 501, 503 at night swarming individuals, 501 celestial orientation, Milky Way, 33–34 dim polarization pattern, moonlit sky, 33, 34 C nocturnal orientation behaviour, 33 Caecilians, 250 straight-line orientation, 33 Canopylight, 357, 358 orientation task, 28, 29 Cattails (Typha spp.) during twilight, 32 emergent vegetation, 334–335 Beer–Lambert’s (BL) law imaging polarimetry, 337, 338 attenuation coefficient, 324–325 mowing, 335, 337–339 exponential equation, 324 polarization visibility, 335–338 integral form, 324 reflection-polarization patterns, 338 light source and sensor, 327 Central complex (CX) network Mie interaction, 325–326 beyond, 98–100 Rayleigh scattering, 325 columnar neurons, 89 scattering/absorption efficiency, 325, 326 input stage, 90–93 Birds, polarisation vision intermediate stage, 91, 93–95 behavioural evidence, 287 output stage, 92, 95–96 celestial orientation and migration physiological evidence, proposed avian magnetic compass, 279–280 information flow, 96–98 songbirds, 280–281 pontine neurons, 89 stellar compass, 280 processing stages, 89, 90 time-compensated sun compass, 280 protocerebral bridge (PB) and paired cones and oil droplets, 276, 277 noduli, 88 diving, 276 tangential neurons, 88–89 DRAs and monarch butterflies, 413 upper and lower divisions of central body free-flying migratory songbirds, 284 (CBU, CBL), 88 high temporal resolution, FFF, 276 Cephalopods magnetoreception, 258 arsenal of iridophores, 14 oil droplet mechanism, 278–279 coding and processing, information insects, physiological mechanism, 287–288 218 Savannah sparrows, 284–287 colour vision, 220 twilight period communication, 221–222 bluefin tunas, spike dives, 284 and crustaceans, 14, 173, 177, 191 flight altitude profile, 281–282 honeybees sensitivity, 217–218 high-altitude ascent flights, 282–283 identification, 219–220 ultraviolet (UV) range, 276–278 intensity-based acuity, 220–221 640 Index Cephalopods (cont.) LCP reflection, evolutionary significance, optomotor systems, 220 153 orthogonal orientations, 218 Protaetia cuprea scarabs, 153, 160, polarization vision systems, 18 161–163, 165, 167 rhabdomeric structure, photoreceptors, 218 Protaetia jousselini scarabs, 154, 156–158 signals, 223 Scarabaeidae, subfamilies, 151 surroundings, 221 vegetation environment, 152 survey, 218, 219 Cloud distribution, 598–599 terrestrial and marine organisms, 221 Cockchafers Cetonia aurata, CP vision atmospheric optical models lack of visual function, experiments, canopylight, 357, 358 161–168 downwelling light, degree of LC polarizing exocuticle, 167 polarization, 357, 359–360 pheromones, 167 partially polarized sunlight, 358 stimulus beetles, 166 polarized intensity, 357, 359, 360 Chironomids blue spectral and polarization, DRA, 355, egg density, 520 356 microvilli arrangement, 519 cricket Gryllus campestris, 355 polarization and intensity of light, degree of skylight polarization, 355 experiments, 518–519 E-vector (direction/angle of polarization) polarization egg-trapping, 558 pattern, 357 pre-oviposition behaviour, 519 green sensitive receptors, DRA reproductive behaviour, 518 Melolontha melolontha, 357, 362 TOC concentrations, water, 519–520 Parastizopus armaticeps, 362, 363 Chrysina gloriosa (jewel scarabs) logarithmic quantum, 360, 361 circularly polarizing exocuticle, 161 receptor-physiological approach, 361 foliage-reflected skylight, polarization, 161 “UV-sky-pol paradox”, 356 LCP and an RCP polarizer., 158–160 Compass behaviour, polarization phototactic response and flight orientation, Australian desert ants, Melophorus bagoti, 159 11 UP vs. LCP vs. RCP experiment, 159 by bees and ants, 10 Circular polarisation sensitivity (CPS), 176,
Recommended publications
  • Grape Insects +6134
    Ann. Rev. Entomo! 1976. 22:355-76 Copyright © 1976 by Annual Reviews Inc. All rights reserved GRAPE INSECTS +6134 Alexandre Bournier Chaire de Zoologie, Ecole Nationale Superieure Agronornique, 9 Place Viala, 34060 Montpellier-Cedex, France The world's vineyards cover 10 million hectares and produce 250 million hectolitres of wine, 70 million hundredweight of table grapes, 9 million hundredweight of dried grapes, and 2.5 million hundredweight of concentrate. Thus, both in terms of quantities produced and the value of its products, the vine constitutes a particularly important cultivation. THE HOST PLANT AND ITS CULTIVATION The original area of distribution of the genus Vitis was broken up by the separation of the continents; although numerous species developed, Vitis vinifera has been cultivated from the beginning for its fruit and wine producing qualities (43, 75, 184). This cultivation commenced in Transcaucasia about 6000 B.C. Subsequent human migration spread its cultivation, at firstaround the Mediterranean coast; the Roman conquest led to the plant's progressive establishment in Europe, almost to its present extent. Much later, the WesternEuropeans planted the grape vine wherever cultiva­ tion was possible, i.e. throughout the temperate and warm temperate regions of the by NORTH CAROLINA STATE UNIVERSITY on 02/01/10. For personal use only. world: North America, particularly California;South America,North Africa, South Annu. Rev. Entomol. 1977.22:355-376. Downloaded from arjournals.annualreviews.org Africa, Australia, etc. Since the commencement of vine cultivation, man has attempted to increase its production, both in terms of quality and quantity, by various means including selection of mutations or hybridization.
    [Show full text]
  • Bioreplicated Visual Features of Nanofabricated Buprestid Beetle Decoys Evoke Stereotypical Male Mating Flights
    Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights Michael J. Dominguea,1, Akhlesh Lakhtakiab, Drew P. Pulsiferb, Loyal P. Halla, John V. Baddingc, Jesse L. Bischofc, Raúl J. Martín-Palmad, Zoltán Imreie, Gergely Janikf, Victor C. Mastrog, Missy Hazenh, and Thomas C. Bakera,1 Departments of aEntomology, bEngineering Science and Mechanics, cChemistry, and dMaterials Science and Engineering, Pennsylvania State University, University Park, PA 16802; ePlant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-3232 Budapest, Hungary; fDepartment of Forest Protection, Forest Research Institute, H-1022 Mátrafüred, Hungary; gAnimal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, US Department of Agriculture, Buzzards Bay, MA 02542; and hHuck Institutes of the Life Sciences Microscope Facilities, Pennsylvania State University, University Park, PA 16802 Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved August 19, 2014 (received for review July 7, 2014) Recent advances in nanoscale bioreplication processes present the and detection of pest species, but the communication efficacy of potential for novel basic and applied research into organismal the bioreplica needs to be validated under field conditions using behavioral processes. Insect behavior potentially could be affected naturally occurring (i.e., wild) populations. by physical features existing at the nanoscale level. We used nano- In contrast, biomimicry of chemical signals, such as insect pher- bioreplicated visual decoys of female emerald ash borer beetles omones, has been a burgeoning field for more than half a century. (Agrilus planipennis) to evoke stereotypical mate-finding behav- Synthetically reproduced pheromones have been successfully ap- ior, whereby males fly to and alight on the decoys as they would plied under field conditions to manipulate insect behavior for in- on real females.
    [Show full text]
  • (Araneae) As Polyphagous Natural Enemies in Orchards" by S
    SPIDERS (ARANEAE) ASPOLYPHAGOU S NATURAL ENEMIES IN ORCHARDS Promotor: dr. J. C. van Lenteren hoogleraar ind e Entomologie inhe tbijzonde r deoecologi e der insecten Co-Promotor: dr. ir. P.J . M.Mol s universitair docent Laboratoriumvoo r Entomologie ,> - • Sandor Bogya SPIDERS (ARANEAE) ASPOLYPHAGOU S NATURAL ENEMIES IN ORCHARDS Proefschrift terverkrijgin g vand e graad vandocto r opgeza gva n derecto r magnificus van deLandbouwuniversitei t Wageningen, dr. C.M .Karssen , inhe t openbaar te verdedingen opdinsda g 27apri l 1999 desnamiddag st e 13.30uu r ind eAul a to my parents ISBN: 90 580803 74 cover drawings by Jozsef Kovacs BIBLIOTHEEK LANDBOUWUNIVERSITEIT WAGENINGEN Propositions 1. Workers in the field of biological control should not try to make the spider fit the mold of the specialist predator or parasitoid. Riechert& Lockley(1984 )Ann . Rev. Entomol.29:299-320 . ThisThesi s 2. Single spider species cannot, but whole spider communities, as complexes of generalist predators can be effective in controlling pests. Wise(1995 )Spider si necologica lwebs .Cambridg eUniversit yPres s ThisThesi s 3. Careful use of pesticides in orchard IPM programs may result in development of more complex and abundant spider communities, thereby augmenting biological pest control. ThisThesi s 4. Cluster analysis and measurement of ecological similarity are two parts art and one part science, and ecological intuition is essential to successfully interpret the results. Krebs(1989 )Ecologica lmethodology .Harpe r& Row Publisher ThisThesi s 5. If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple.
    [Show full text]
  • Plasmopara Viticola) G
    IOBC / WPRS Working Group “Integrated Protection and Production in Viticulture” OILB / SROP Groupe de Travail “Lutte Intégrée et Production Intégrée en Viticulture” Proceedings of the Meeting Compte Rendu de la Réunion at / à Volos (Hellas) March 18-22, 2003 Edited by Carlo Lozzia IOBC wprs Bulletin Bulletin OILB srop Vol. 26 (8) 2003 The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2003 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: luc.tirry@ rug.ac.be Address General Secretariat: INRA – Centre de Recherches de Dijon Laboratoire de recherches sur la Flore Pathogène dans le Sol 17, Rue Sully, BV 1540 F-21034 DIJON CEDEX France ISBN 92-9067-156-2 Editorial The meeting that was held in Volos, supported by the Benaki Institute, has ratified the 30 years of the working groups that today have become Integrated Protection and Production in Viticulture. It is my intention to remind and thank all those who, with their work, have contributed to the birth, the development and the extraordinary vitality of this group.
    [Show full text]
  • Research & Reviews in Agriculture, Forestry and Aquaculture Sciences
    1 RESEARCH & REVIEWS IN AGRICULTURE, FORESTRY AND AQUACULTURE SCIENCES - Summer, 2019 2 Research&Reviews in Agriculture, Forestry and Aquaculture Sciences Kitap Adı : Research & Reviews in Agriculture, Forestry and Aquaculture Sciences – Summer, 2019 İmtiyaz Sahibi : Gece Kitaplığı Genel Yayın Yönetmeni : Doç. Dr. Atilla ATİK Kapak&İç Tasarım : Sevda KIRDAR Sosyal Medya : Arzu ÇUHACIOĞLU Yayına Hazırlama : Gece Akademi Dizgi Birimi Yayıncı Sertifika No : 15476 Matbaa Sertifika No : 34559 ISBN : 978-605-7852-88-5 Editör (s) Prof. Dr. Ali Musa BOZDOĞAN Prof. Dr. Nigar YARPUZ-BOZDOĞAN The right to publish this book belongs to Gece Kitaplığı. Citation can not be shown without the source, reproduced in any way without permission. Gece Akademi is a subsidiary of Gece Kitaplığı. Bu kitabın yayın hakkı Gece Kitaplığı’na aittir. Kaynak gösterilmeden alıntı yapılamaz, izin almadan hiçbir yolla çoğaltılamaz. Gece Akademi, Gece Kitaplığı’nın yan kuruluşudur. Birinci Basım/First Edition ©Haziran 2019/Ankara/TURKEY ©copyright Gece Publishing ABD Adres/ USA Address: 387 Park Avenue South, 5th Floor, New York, 10016, USA Telefon/Phone: +1 347 355 10 70 Gece Akademi Türkiye Adres/Turkey Address: Kocatepe Mah. Mithatpaşa Cad. 44/C Çankaya, Ankara, TR Telefon/Phone: +90 312 431 34 84 - +90 555 888 24 26 web: www.gecekitapligi.com –– www.gecekitap.com e-mail: [email protected] Burcu TUNCER 3 CONTENTS CHAPTER 1 THE USE OF MICROSPORE CULTURES IN VEGETABLE BREEDING IN TURKEY Burcu TUNCER ............................................................................................................................. 5 CHAPTER 2 DETERMINATION OF DISTRIBUTION AREAS, HARMFUL INSECTS AND MITE SPECIES IN VINEYARDS Mehmet KAPLAN ...................................................................................................................... 21 CHAPTER 3 A GEOGRAPHIC INFORMATION SYSTEMS (GIS)-BASED MULTI-CRITERIA EVALUATION FOR GREENHOUSE SITE SELECTION.
    [Show full text]
  • Helianthus Annuus) in Northern Greece (2010-2015)
    19th International Sunflower Conference, Edirne, Turkey, 2016 INSECT MONITORING IN SUNFLOWER CROPS (HELIANTHUS ANNUUS) IN NORTHERN GREECE (2010-2015) Anthimos ANASTASIADES 1 1 Centre "Demetra", Elgo "Demetra", Drama, Greece [email protected] ABSTRACT Twenty-eight insect species were recorded in sunflower crops in Northern Greece, during the 2010-2015 period. The recorded species were classified into three categories: a) pests, b) beneficial and c) insects that were merely observed in sunflower fields. In the first category, the recorded insect species in sunflower crops were green peach aphids (Myzus persicae, Hem.: Aphididae), thrips (Thys.: Thripidae), ground beetle grubs (Col.: Scarabaeidae), meadow froghoppers (Philaenus spumarius, Hem.: Aphrophoridae), common meadow bugs (Lygus pratensis, Hem.: Miridae), click beetle larvae (Agriotes spp., Col.: Elateridae), grasshoppers (Orth.: Acrididae), cutworms (Agrotis spp.), long horn beetle larvae (Agapanthia cynarae, Col.: Cerambycidae), sugarbeet weevils (Bothynoderes punctiventris, Col.: Curculionidae), leafhoppers (Hem.: Cicadellidae), whiteflies (Bemisia tabaci, Hem.: Aleyrodidae), vine chafer beetles (Anomala vitis, Col.: Scarabaeidae), flea beetles (Chaetocnema tibialis, Col.: Chrysomelidae), bordered straw larvae (Heliothis peltigera, Lep.: Noctuidae), black bean aphids (Aphis fabae, Hem.: Aphididae), two-spotted spider mites (Tetranychus urticae, Tetranychidae) and nematodes (Meloidogyne hispanica, Tylenchida). In the beneficial insects category, ladybirds (Coccinella septempunctata,
    [Show full text]
  • Insect Pests of Fruit Trees and Grapevine
    Insect Pests of Fruit Trees and Grapevine Insect Pests of Fruit Trees and Grapevine By Minos Tzanakakis and Byron Katsoyannos Insect Pests of Fruit Trees and Grapevine By Minos Tzanakakis and Byron Katsoyannos This book first published 2021 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2021 by Minos Tzanakakis and Byron Katsoyannos All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-6822-9 ISBN (13): 978-1-5275-6822-8 V Contents Preface……………………………………………………………………........… VII Acknowledgments ………………………………………………………….… XI Introduction……………………………………………………………………… 1 Insects of pome trees …………………………………………………….……. 9 Insects of stone fruit trees …………………………………………………. 119 Insects of citrus trees ………………………………………………………….. 173 Insects of the olive tree …………………………………………………......... 221 Insects of the pistachio tree ………………………………………............ 325 Insects of the fig tree ………………………………………………………….. 351 Insects of walnut, chestnut, hazelnut and mulberry trees ……. 365 Insects of grapevine……………………………………………………………. 395 Insects of a few amenity trees and shrubs ……………………………. 445 References ………………………………………………………………………… 471 Taxa index……………………………………………………………………….... 519 VII Preface The present book describes the morphology, life history, symptoms of injury to the trees, and ways and means of controlling insect pests of fruit trees or grapevine. It is particularly useful to university instructors teaching respective courses, to students taking such courses, and to fruit or grapevine growers and other persons involved in the growing or protection of fruit trees or grapevine from insect pests.
    [Show full text]
  • Problemática De Los Gusanos Blancos (Coleoptera, Scarabaeidae) En El Olivar De La Provincia De Sevilla
    Bol. San. Veg. Plagas, 22: 319-328, 1996 Problemática de los gusanos blancos (Coleoptera, Scarabaeidae) en el olivar de la provincia de Sevilla M. ALVARADO, A. SERRANO, J. M. DURÁN y DE LA ROSA. Los gusanos blancos (Coleóptera: Scarabaeoidea) se asocian a daños graves oca• sionados en olivares de la provincia de Sevilla, afectando principalmente a árboles jóvenes en suelos arenosos y riego por goteo. Durante 1993-94-95 se estudian las especies implicadas, importancia, daños y ciclo biológico. Melolontha papposa ILL.y Ceramida cobosi (Báguena) fueron las especies más dañinas, aunque también se han encontrado larvas de Anomala ausonia Erichson afec• tando a las raíces. El periodo de nascencia de larvas (junio) se apunta como el mejor momento para aplicar plaguicidas. M. ALVARADO A. SERRANO, J. M. DURAN Y DE LA ROSA: Servicio de Sanidad Vegetal. Dirección General de Agricultura y Ganadería. Consejería de Agricultura y Pesca. Junta de Andalucía. Apartado 121 (Montequinto), 41089 Sevilla. Palabras clave: Anomala ausonia Erichon, Ceramida cobosi Báguena, Melolontha papposa ILL., Coleóptera, Scarabaeoidea, olivo, daños, ciclo biológico, Sevilla INTRODUCCIÓN mos altas poblaciones de larvas, aunque con una distribución muy variable entre parce• El olivar, cultivo muy importante en las, mezcla de especies (algunas no conoci• Andalucía, está incrementando notablemen• das) y sobre todo daños muy graves que lle• te su superficie de plantación, tanto el olivar gaban a un 30 % de árboles ya arrancados. para aceite como para mesa. Ante esta problemática decidimos incluir los En muchos casos es corriente apreciar gusanos blancos en nuestros estudios. cambios en las técnicas de cultivo, como son Existen pocas citas de daños causados por la reducción del laboreo, el riego por gusanos blancos en olivar, la mayoría en goteo..., con el objetivo de incrementar y libros divulgativos y en muchos casos regular la producción.
    [Show full text]
  • Aggregation Pheromones of Coleopteran Pests of Palms
    AGGREGATION PHEROMONES OF COLEOPTERAN PESTS OF PALMS Rebecca Helen Hallett B.Sc. (Spec. Biogeog.), University of Toronto, 1986 M.P.M., Simon Fraser University, 1991 THESIS SUBMllTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences O Rebecca H. Hallett 1996 SIMON FRASER UNIVERSITY August 1996 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author APPROVAL NAME: Rebecca Helen Hallett DEGREE: DOCTOR OF PHILOSOPHY TITLE OF THESIS: AGGREGATION PHEROMONES OF COLEOPTERAN PESTS OF PALMS EXAMINING COMMITTEE: CHAIR: Dr. Stephen Lee, Assistant Professor Dr. 1\ H. Borden, Professor, Senior Supervisor Department of Biological Sciences, SFU Dr. A C. Oehlschlager,Professor Dpartment of Chd- Dr. G. Gries, Department of . Dr. N. P. D. Ang-Professor Department of Biological Sciences, SFU Dr. L. Sahn ' ' ch cientist Pacific Forestry$ForL Canada Public Examiner Dr. T. W. Phillips, Research Entomologist United States Department of Agriculture Agricultural Research Station, Hi10 External Examiner PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Physiology & Behavior 105 (2012) 1067–1075 Contents lists available at SciVerse ScienceDirect Physiology & Behavior journal homepage: www.elsevier.com/locate/phb No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle Miklós Blahó a, Ádám Egri a, Ramón Hegedüs b, Júlia Jósvai c, Miklós Tóth c, Krisztián Kertész d, László Péter Biró d, György Kriska e, Gábor Horváth a,⁎ a Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary b Computer Vision and Robotics Group, University of Girona, Campus de Montilivi, Edifici P4, 17071 Girona, Spain c Plant Protection Institute of the Hungarian Academy of Sciences, H-1525 Budapest, P. O. B. 102, Hungary d Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences, H-1525 Budapest, P. O. B. 49, Hungary e Group for Methodology in Biology Teaching, Biological Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary article info abstract Article history: The strongest known circular polarization of biotic origin is the left-circularly polarized (LCP) light reflected Received 26 September 2011 from the metallic shiny exocuticle of certain beetles of the family Scarabaeidae. This phenomenon has been Received in revised form 19 November 2011 discovered by Michelson in 1911. Although since 1955 it has been known that the human eye perceives a vi- Accepted 23 November 2011 sual illusion when stimulated by circularly polarized (CP) light, it was discovered only recently that a sto- Available online 01 December 2011 matopod shrimp is able to perceive circular polarization.
    [Show full text]
  • 2005/12. Nıv”Ny Tırdelt
    NÖVÉNYVÉDELEM 41 (12), 2005 581 GYÜMÖLCS- ILL. VIRÁGKÁROKAT OKOZÓ CSEREBOGÁR- FÉLÉK KÉMIAI KOMMUNIKÁCIÓJA: EGY ÉVTIZED KUTATÁSI EREDMÉNYEI Tóth Miklós1, Imrei Zoltán1, Szarukán István3, Voigt Erzsébet2, Schmera Dénes1, Vuts József1, Harmincz Krisztina3 és Mitko Subchev4 1MTA Növényvédelmi Kutatóintézete, 1525 Budapest, Pf. 102. 2Gyümölcs- és Dísznövénytermesztési Kutató fejlesztô Kht., Budapest 3Debreceni Egyetem, Agrártudományi Centrum, Debrecen 4Bolgár Tudományos Akadémia Zoológiai Kutatóintézete, Szófia, Bulgária Számos olyan cserebogárfaj ismert hazánkban, melyek gyümölcskultúrákban esetenként érzé- keny károkat okozhatnak a virágok vagy gyümölcsök pusztításával. Az ilyen kárt a kifejlett bogarak (az imágók) okozzák. Munkacsoportunk azért kezdett bele e fajok kémiai kommunikációjának vizs- gálatába, hogy az imágókat befogni képes csapdák kifejlesztésének tudományos alapjait tisztázza. Ellentétben ugyanis az oly jól ismert, különféle molylepkék szexferomonját tartalmazó, az elôrejel- zésben alkalmazott csapdákkal, a cserebogarak esetében a csapda magát a kárt okozó bogarakat fogná be, és így e csapdák alkalmazásával lehetôség nyílhat megfelelôen nagy bogártömeg befogá- sakor a kár közvetlen csökkentésére is. Kutatásaink során VARb3 kódnévvel nagy fogókapacitású, módosított varsás csapdatípust fej- lesztettünk ki, mely az összes, kipróbált cserebogárfaj fogására rendkívül alkalmasnak bizonyult. A témában elért egyik elsô kutatási eredményünk hatékony szexattraktáns felfedezése volt a zöld és a rezes cserebogár (Anomala vitis, A. dubia)
    [Show full text]
  • Pest Control: from Chemical Ecology to Evolution. a Hungarian Perspective
    Acta Phytopathologica et Entomologica Hungarica 41 (1–2), pp. 121–135 (2006) DOI: 10.1556/APhyt.41.2006.1-2.13 Pest Control: from Chemical Ecology to Evolution. A Hungarian Perspective T. JERMY, Á. SZENTESI, M. TÓTH and G. SZÔCS* Plant Protection Institute, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 102, Hungary (Received: 15 December 2005; accepted: 20 January 2006) From 1880, the year of funding the National Phylloxera Research Station, the predecessor of the pre- sent Department of Zoology of the Plant Protection Institute, the main thrust of entomological research was towards solving practical problems in agriculture, which mission governs our recent activity and guides our plans for the future. Our studies on the behaviour of herbivorous insects have shown that oligophagy is mainly due to the sensitivity of the insects’ chemosensory system to deterrent chemicals occurring in the non-host plants. This enables the use of antifeedants in pest control. In field experiments the insects found their hosts largely by chance, which has implications for crop rotation. The ability of learning in some herbivorous insect species has been demonstrated. It may result in induced preference for some otherwise avoided plants. Ecological studies indicated that predispersal seed predators do not necessarily affect plant population dynamics and that there is no interspecific competition among them. Studying the presumable processes that drive the evolution of insect- plant associations resulted in elaborating the theory of sequential evolution instead of the theory of coevolution. In course of 30 year studies, female-produced sex pheromones were evidenced in behavioural studies, isolated, and chemically identified in cooperations with organic chemical laboratories, for a few dozens of lep- idopterous species.
    [Show full text]