Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Final Report QB50 Sensor Selection Working Group (SSWG) Final Report 19 March 2012 Editor: Prof. Alan Smith Mullard Space Science Laboratory (MSSL) University College London (UCL) Holmbury St. Mary Dorking, Surrey RH5 6NT United Kingdom 1 SSWG Membership A. Smith (Chairman, Mullard Space Science Laboratory, UK) T. Beuselinck (RedShift BVBA, Belgium) J. F. Dalsgaard Nielsen (Aalborg University, Denmark) J. De Keyser (Belgian Institute for Space Aeronomy, Belgium) A. Gregorio (University of Trieste, Italy) D. Kataria (Mullard Space Science Laboratory, UK) V. Lappas (Surrey Space Centre, UK) F. J. Lübken (Institute for Atmospheric Physics, Germany) J. Moen (University of Oslo, Norway) S. Palo (University of Colorado, USA) R. Reinhard (von Karman Institute, Belgium) A. Ridley (University of Michigan, USA) J. Rotteveel (Innovative Solutions In Space, Netherlands) G. Schmidtke (Fraunhofer Institute for Physical Measurement Techniques, Germany) T. Schmiel (TU Dresden, Germany) 2 Table of Contents 1. Introduction ........................................................................................................................... 4 2. The QB50 Project .................................................................................................................... 5 3. Science Context ..................................................................................................................... 10 4. In‐situ measurements in the lower thermosphere – other projects ........................................ 13 4.1 Past satellites in highly elliptical orbits ............................................................................... 13 4.2 The Drag and Atmospheric Neutral Density Explorer (DANDE) ............................................ 20 4.3 Low‐Flying Spacecraft (LFSC) Daedalus ................................................................................ 21 4.4 Sounding Rocket experiments ............................................................................................ 22 4.5 Armada .............................................................................................................................. 26 5. QB50 Candidate Sensors ........................................................................................................ 28 5.1 Introduction ....................................................................................................................... 28 5.2 Ion and Neutral mass spectrometer .................................................................................... 29 5.3 FIPEX: In‐situ Atomic Oxygen Measurement in Low‐Earth Orbit .......................................... 32 5.4 Multi‐Needle Langmuir Probe ............................................................................................. 37 5.5 Magnetoresistive magnetometer ........................................................................................ 40 5.6 Accelerometer .................................................................................................................... 43 5.7 GPS receiver ....................................................................................................................... 46 5.8 Laser Retroreflector ............................................................................................................ 52 5.9 Thermistors/thermocouples ............................................................................................... 53 5.10 Q‐BOS (Bolometric Oscillation Sensor) .............................................................................. 56 5.11 Silicon Detector ................................................................................................................ 59 5.12 Spherical EUV and Plasma Spectrometer (SEPS) ................................................................ 63 5.13 WINCS .............................................................................................................................. 68 5.14 Sensor Resource Summary ............................................................................................. 70 6. QB50 CubeSat physical constraints and payload architecture ....... Error! Bookmark not defined. 7. Selection ............................................................................................................................... 71 8. Recommendations ................................................................................................................ 74 9. Baseline sensor package configurations ................................................................................. 75 10. References ......................................................................................................................... 76 11. Acronyms .......................................................................................................................... 77 12. Contributors ...................................................................................................................... 81 3 1. Introduction The QB50 Sensor Selection Working Group met on four occasions: 3 March 2011, 4 May 2011, 16-17 June 2011, and 26 July 2011. All meetings were held at the von Karman Institute for Fluid Dynamics, Rhode‐St‐Genèse, near Brussels, Belgium. The results of the working group were reported on 27 July 2011 at the 2nd QB50 workshop and then to the QB50 Steering Committee on the same day. The task of the SSWG was to identify optimal sensor package options for the network part of the QB50 mission taking into consideration: scientific objectives; potential science instruments, their availability and their heritage; the very limited spacecraft resources of CubeSats; and the limited available financial resources. The SSWG remained cognisant of the overall QB50 mission objectives and recognised that these were perceived differently by the variety of stakeholders including EC, the Science Community and CubeSat providers. The group also recognised the importance of the science context both in terms of what were the key scientific issues to be addressed, and also what missions have flown or are proposed for this area of endeavour. Given the CubeSat nature of the mission, accommodation constraints for any selected sensor package were naturally important and given high priority in discussions. A wide range of sensor options were considered with additional options being introduced as they became known to the group. Expert advice was sought where appropriate and budgetary considerations were included in the SSWG deliberations. Inputs were received from a wide variety of sources including other QB50 working groups, commercial organisations, science groups, and potential instrument providers. Meetings included teleconference sessions and presentations. This report outlines the QB50 project, provides science context, describes earlier missions and future mission proposals in this area and then goes on to describe the science instrument options that were considered. A brief description of the payload architecture and payload interface requirement is then followed by the selected payload options and other recommendations. This report was compiled from numerous inputs (attributed below) and edited by A. Smith. 4 2. The QB50 Project R. Reinhard, VKI QB50 is a network 50 CubeSats in a ‘string‐of‐pearls’ configuration that will be launched together in the first half of 2015 by a single rocket, a Shtil‐2.1, from Murmansk, Northern Russia into a circular orbit at 320 km altitude, inclination 79°. The 50 CubeSats will comprise about 40 atmospheric double CubeSats and about 10 double or triple CubeSats for science and technology demonstration. All 40 atmospheric double CubeSats and most of the 10 double and triple CubeSats for In‐Orbit Demonstration (IOD CubeSats) will carry a set of standardized sensors for multi‐point, in‐situ, long‐duration measurements of key parameters and constituents in the largely unexplored lower thermosphere and ionosphere. These multi‐point measurements will allow the separation of spatial and temporal variations. Due to atmospheric drag, the CubeSat orbits will decay and progressively lower and lower layers of the thermosphere/ionosphere will be explored without the need for on‐ board propulsion. The mission lifetime of individual CubeSats is estimated to be about three months. QB50 will also study the re‐entry process by measuring a number of key parameters during re‐entry, e.g. CubeSat on‐board temperature and deceleration. The re‐entry process will also be studied by comparing predicted (using a variety of atmospheric models and different trajectory simulation software tools and CubeSat ballistic coefficients) and actual CubeSat trajectories and orbital lifetimes, and by comparing predicted and actual times and latitudes/longitudes of atmospheric re‐entry. The initial total network size in orbit is determined by the deployment sequence, deployment speed and direction, and can be selected anywhere between 500 and 5000 km. It is currently planned to deploy one CubeSat every orbit, i.e. every 86 minutes. All deployment will preferably take place on the dayside of the orbit. The deployment speed will be 2‐3 m/s and the deployment direction will be uncontrolled. The initial distance between individual CubeSats will be between a few tens and a few hundred kilometres. Orbital modelling has shown that due to density variations along the orbit and small differences in the CubeSat ballistic coefficients the separation distance will change, eventually leading to a non‐uniform
Recommended publications
  • Suborbital Platforms and Range Services (SPARS)
    Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences.
    [Show full text]
  • ASTRONAUTICS and AERONAUTICS, 1977 a Chronology
    NASA SP--4022 ASTRONAUTICS AND AERONAUTICS, 1977 A Chronology Eleanor H. Ritchie ' The NASA History Series Scientific and Technical Information Branch 1986 National Aeronautics and Space Administration Washington, DC Four spacecraft launched by NASA in 1977: left to right, top, ESA’s Geos 1 and NASA’s Heao 1; bottom, ESA’s Isee 2 on NASA’s Isee 1, and Italy’s Wo. (NASA 77-H-157,77-H-56, 77-H-642, 77-H-484) Contents Preface ...................................................... v January ..................................................... 1 February .................................................... 21 March ...................................................... 47 April ....................................................... 61 May ........................................................ 77 June ...................................................... 101 July ....................................................... 127 August .................................................... 143 September ................................................. 165 October ................................................... 185 November ................................................. 201 December .................................................. 217 Appendixes A . Satellites, Space Probes, and Manned Space Flights, 1977 .......237 B .Major NASA Launches, 1977 ............................... 261 C. Manned Space Flights, 1977 ................................ 265 D . NASA Sounding Rocket Launches, 1977 ..................... 267 E . Abbreviations of References
    [Show full text]
  • Sounding Rockets 2017 Annual Report
    National Aeronautics and Space Administration NASA Sounding Rockets Annual Report 2017 particle energy measurements. Where once five or six free flying subpayloads were possible, now twenty or more are feasible. Astrophysicists are always wanting to collect more photons to enhance scientific return. This dictates a need for either larger diameter payloads to accommodate larger mirrors, or longer obser- vation times – and usually both. Astrophysics missions have, to a large extent, been limited to flying from White Sands Missile Range in New Mexico due to the requirement to recover the instruments for re-flight. Longer flights require higher apogees, which gener- ally dictate the need for ranges with larger impact areas. Larger launch ranges usually require flight over the ocean. The program is developing new water recovery technologies to enable such missions at a cost that is commensurate with the low-cost nature of the program. The new system includes a hydrodynamic wedge to reduce impact loads and sealed sections to protect the science instruments and expensive support systems such as telemetry and attitude control systems. The trick is, each of these systems needs to have some sort of exposure to the outside environment during the scientific data period, yet be sealed when they impact the ocean. While ocean recovery has been done for essentially the entire life of the program, it has involved relatively basic systems that offered few Phil Eberspeaker from the Chief Message engineering challenges. Now telescopes, telemetry systems, attitude Chief, Sounding Rockets Program Office controls systems, and even the recovery systems themselves need to be protected so they can be reflow on future missions.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Successful Launch of the First Epsilon Launch Vehicle
    Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) 59 Contribution to Japan's Flagship Launch Vehicle – part 2 -Successful Launch of the first Epsilon Launch Vehicle- TATSURU TOKUNAGA*1 NOBUHIKO KOHARA*2 KATSUYA HAKOH*3 TSUTOMU TAKAI*4 KYOICHI UI*5 TETSUYA ONO*6 On September 14, 2013, the first Epsilon Launch Vehicle was launched from (Independent Administrative Institution) Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Center, and succeeded in properly injecting a satellite into orbit. In Epsilon Launch Vehicle development, we participate in the development/manufacture of the second-stage reaction control system(RCS) and modification maintenance of the launcher for the Epsilon launch system. The development/maintenance details and launch results are introduced in this report. |1. Introduction JAXA started development of the Epsilon Launch Vehicle in 2010, going through the stages of vehicle development, manufacturing, and maintenance of launch-related facilities, until the first Epsilon Launch Vehicle was launched from Uchinoura Space Center in 2013. We contributed to the successful launch of the first Epsilon Launch Vehicle through development of the second-stage reaction control system, which was equipped onto the launch vehicle, and modification maintenance of the launcher. Details of the development/maintenance and the launch results are introduced here. |2. Approach to Epsilon Launch Vehicle Development 2.1 General The Epsilon Launch Vehicle is the three-staged solid rocket developed by JAXA since 2010, and is the successor to the M-V launch vehicle technology, which completed operations in 2006, and develops to organize technical application/commonality of the H-IIA launch vehicle.
    [Show full text]
  • 514137 Journal of Space Law 35.2.Ps
    JOURNAL OF SPACE LAW VOLUME 35, NUMBER 2 Winter 2009 1 JOURNAL OF SPACE LAW UNIVERSITY OF MISSISSIPPI SCHOOL OF LAW A JOURNAL DEVOTED TO SPACE LAW AND THE LEGAL PROBLEMS ARISING OUT OF HUMAN ACTIVITIES IN OUTER SPACE. VOLUME 35 WINTER 2009 NUMBER 2 Editor-in-Chief Professor Joanne Irene Gabrynowicz, J.D. Executive Editor Jacqueline Etil Serrao, J.D., LL.M. Articles Editors Business Manager Meredith Blasingame Michelle Aten P.J. Blount Marielle Dirkx Senior Staff Assistant Chris Holly Melissa Wilson Jeanne Macksoud Doug Mains Staff Assistant Kiger Sigh Je’Lisa Hairston John Wood Founder, Dr. Stephen Gorove (1917-2001) All correspondence with reference to this publication should be directed to the JOURNAL OF SPACE LAW, P.O. Box 1848, University of Mississippi School of Law, University, Mississippi 38677; [email protected]; tel: +1.662.915.6857, or fax: +1.662.915.6921. JOURNAL OF SPACE LAW. The subscription rate for 2009 is $100 U.S. for U.S. domestic/individual; $120 U.S. for U.S. domestic/organization; $105 U.S. for non-U.S./individual; $125 U.S. for non-U.S./organization. Single issues may be ordered at $70 per issue. For non-U.S. airmail, add $20 U.S. Please see subscription page at the back of this volume. Copyright © Journal of Space Law 2009. Suggested abbreviation: J. SPACE L. ISSN: 0095-7577 JOURNAL OF SPACE LAW UNIVERSITY OF MISSISSIPPI SCHOOL OF LAW A JOURNAL DEVOTED TO SPACE LAW AND THE LEGAL PROBLEMS ARISING OUT OF HUMAN ACTIVITIES IN OUTER SPACE. VOLUME 35 WINTER 2009 NUMBER 2 CONTENTS Foreword ..............................................
    [Show full text]
  • Sounding Rocket - Wikipedia, the Free Encyclopedia Page 1 of 4
    Sounding rocket - Wikipedia, the free encyclopedia Page 1 of 4 Sounding rocket From Wikipedia, the free encyclopedia (Redirected from Sounding rockets) A sounding rocket, sometimes called a research rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The origin of the term comes from nautical vocabulary, where to sound is to throw a weighted line from a ship into the water, to gauge the water's depth. Sounding in the rocket context is equivalent to taking a measurement.[1] The rockets are used to carry instruments from 50 to 1,500 kilometers[2] above the surface of the Earth, the altitude generally between weather balloons and satellites (the maximum altitude for balloons is about 40km and the minimum for satellites is approximately 120km).[3] Certain sounding rockets, such as the Black Brant X and XII, have an apogee between 1,000 and 1,500 kilometers; the maximum apogee of their class. Sounding rockets [1] often use military surplus rocket motors. NASA routinely flies A Black Brant XII being launched the Terrier Mk 70 boosted Improved Orion lofting 270–450 from Wallops Flight Facility. kilogram payloads into the exoatmospheric region between 100 and 200 kilometers.[4] Contents ■ 1 Design ■ 2 Advantages ■ 3 Research applications ■ 4 Operators and Programmes ■ 5 Other Uses ■ 6 See also ■ 7 References ■ 8 External links Design A common sounding rocket consists of a solid-fuel rocket motor and a science payload.[1] The freefall part of the flight is an elliptic trajectory with vertical major axis allowing the payload to appear to hover near its apogee.[3] The average flight time is less than 30 minutes, usually between five and 20 minutes.
    [Show full text]
  • Developments in Outer Space: Asia Pacific and Singapore
    UNCLASSIFIED Developments in Outer Space: Asia Pacific and Singapore Prepared by Elliott Tan Intern, Defence Policy Office Ministry of Defence (Singapore) 1 UNCLASSIFIED UNCLASSIFIED Table of Contents Executive Summary.............................................................................................................................................. 3 Background: From the Cold War to the 21st Century .............................................................................................. 4 Historical Context.............................................................................................................................................. 4 Legal and Treaty Considerations......................................................................................................................... 5 Weapons of Outer Space ...................................................................................................................................... 8 Existing Space-Related Weaponry ...................................................................................................................... 8 Diagrams of Space Weaponry ............................................................................................................................ 9 Future Space Capabilities..................................................................................................................................11 Key Space Developments in Asia-Pacific...............................................................................................................13
    [Show full text]
  • Business Partnership and Technology Transfer Opportunities in the Space
    EU-Japan Centre for Industrial Cooperation 日欧産業協力センター The Space Sector EU- Japan business and technological cooperation potential Veronica La Regina Minerva Fellow Tokyo 2015 1 Abstract This report aims to propose the best way of pursuing the EU-Japan industrial cooperation in the field of Space. Firstly, it reviews European and Japanese current cooperation in the field of Space. Secondly, it investigates the current level of trade between the two partners in order to understand the best way to generate further cooperation. Thirdly, the Report hopes to inform both sides about each region’s current Space sector landscape from the political, policy and industrial point of views. Fourthly, it identifies areas of industrial cooperation for which local gaps in knowledge or experience could be filled by foreign expertise, for example the European technological gaps in the small-size satellite constellation could be filled by the Japanese expertise while the Japanese intention to become more commercially oriented could be supported by the more expansive European experience in this area. Finally, recommendations to the Japanese and European stakeholders are provided. Disclaimer & Copyright Notice The information contained herein reflects the views of the author, and not necessarily the views of the EU- Japan Centre for Industrial Cooperation or the views of the EU Commission or Japanese institutions. While utmost care was taken in the preparation of the report, the author and the EU-Japan Centre cannot be held responsible for any errors. This report does not constitute legal advice in terms of business development cases. The author can be reached at [email protected] © EU-Japan Centre for industrial Cooperation 2 Acknowledgement Though only my name appears on the cover of this report, a great many people have contributed to it.
    [Show full text]
  • MORABA Sounding Rocket Launch Vehicles
    MORABA Sounding Rocket Launch Vehicles Mobile Rocket Base German Aerospace Center Sounding Rocket Launch Vehicles 1.1. Introduction The research vehicles offered by MORABA have been used by a wide spectrum of payloads, differing in mass, complexity and transport requirements. In order to serve the needs of any payload and transport requirement, MORABA relies on a large portfolio of rocket motors that it uses in single stage as well as stacked configurations. MORABA constantly strives to enhance the portfolio of active rocket motors in order to improve its transport capacities or replace systems that run out of stock. Although the developments in liquid, gelled and hybrid propulsion are closely followed, the high power density, operational simplicity and safety of solid rocket motors have led to their exclusive use by MORABA so far. A large portion of the active portfolio is formed by motors with military heritage. These motors are conceded to MORABA or its partners from governments that tear down a fraction of their armory. As usually these motors have exceeded their shelf life, inspection and re-lifing efforts become necessary. Many successful missions prove the flight worthiness of these motors which are not least attractive due to their competitive price. The second group of the portfolio is made up by motors available from third parties. Here, MORABA is constantly evaluating potential candidates. A longstanding cooperation with the Brazilian Department of Aerospace Science and Technology (DCTA) has led to frequent use of its S31 and S30 rocket motor stages. At current, MORABA is also developing a solid motor stage with Bayern Chemie GmbH and acquiring some units of Magellan’s Black Brant V.
    [Show full text]