Space Business Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Douglas Missile & Space Systems Division
·, THE THOR HISTORY. MAY 1963 DOUGLAS REPORT SM-41860 APPROVED BY: W.H.. HOOPER CHIEF, THOR SYSTEMS ENGINEERING AEROSPACE SYSTEMS ENGINEERING DOUGLAS MISSILE & SPACE SYSTEMS DIVISION ABSTRACT This history is intended as a quick orientation source and as n ready-reference for review of the Thor and its sys tems. The report briefly states the development of Thor, sur'lli-:arizes and chronicles Thor missile and booster launch inGs, provides illustrations and descriptions of the vehicle systcn1s, relates their genealogy, explains sane of the per fon:iance capabilities of the Thor and Thor-based vehicles used, and focuses attention to the exploration of space by Douelas Aircraf't Company, Inc. (DAC). iii PREFACE The purpose of The Thor History is to survey the launch record of the Thor Weapon, Special Weapon, and Space Systems; give a systematic account of the major events; and review Thor's participation in the military and space programs of this nation. The period covered is from December 27, 1955, the date of the first contract award, through May, 1963. V �LE OF CONTENTS Page Contract'Award . • • • • • • • • • • • • • • • • • • • • • • • • • 1 Background • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Basic Or�anization and Objectives • • • • • • • • • • • • • • • • 1 Basic Developmenta� Philosophy . • • • • • • • • • • • • • • • • • 2 Early Research and Development Launches • • • ·• • • • • • • • • • 4 Transition to ICBM with Space Capabilities--Multi-Stage Vehicles . 6 Initial Lunar and Space Probes ••••••• • • • • • • • -
Intelsat, Ltd. (Exact Name of Registrant As Specified in Charter)
SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of report (Date of earliest event reported): August 12, 2009 Intelsat, Ltd. (Exact Name of Registrant as Specified in Charter) Bermuda 000-50262 98-0346003 (State or Other Jurisdiction (Commission File Number) (IRS Employer of Incorporation) Identification Number) Wellesley House North, 2nd Floor, 90 Pitts Bay Road, Pembroke, Bermuda HM 08 (Address of Principal Executive Offices) (Zip Code) (441) 294-1650 Registrant’s telephone number, including area code n/a (Former Address, If Changed Since Last Report) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below): ☐ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) ☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) ☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) ☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c)) Item 2.02 Results of Operations and Financial Condition On August 12, 2009, Intelsat, Ltd. issued a press release entitled “Intelsat Reports Second Quarter 2009 Results.” A copy of such press release is furnished as an exhibit to this Current Report on Form 8-K. Item 9.01 Financial Statements and Exhibits (d) Exhibits 99.1 Press Release dated August 12, 2009 entitled “Intelsat Reports Second Quarter 2009 Results” -2- SIGNATURE Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized. -
Space Business Review 11, BSAT-3B Will Be Launched by an Kazakhstan on a Russian Soyuz Vehicle
April 2008 A monthly round-up of space industry developments for the information of our clients and friends. EADS Astrium to Acquire SSTL DISH Selects SS/L for EchoStar XV EADS Astrium announced on April 7 that it On April 22, Space Systems/Loral (SS/L), had entered into an agreement with the announced a contract to build the EchoStar University of Surrey to acquire its 80% XV direct broadcast satellite for DISH stake in Surrey Satellite Technology Network Corporation. Scheduled for launch Limited (SSTL) for an estimated £40-50 in 2010, the spacecraft will be based on million. Based in the United Kingdom, SSTL SS/L’s proven 1300 platform and is designed specializes in the design and manufacture of to support the expansion of DISH Network’s small and micro satellites, including the programming and services. Giove-A test satellite for Europe's Other April Launch Services forthcoming Galileo satellite navigation On April 14, Lockheed Martin Commercial system. The transaction, which remains Launch Services successfully launched the subject to regulatory approvals, will provide ICO G1 satellite for ICO Global the financial and industrial resources Communications (Holdings) Ltd’ from Cape required for SSTL’s expansion and future Canaveral Air Force Station in Florida on an development. It is expected that SSTL will Atlas V 421 vehicle. Built by SS/L based on remain an independent UK company. its 1300 platform, ICO G1 weighed BSAT-3b Contract Awards approximately 6,634 kg at launch, is equipped On April 15, Lockheed Martin Commercial with a 12-meter S-band reflector capable of Space Systems announced its selection by ground-based beam forming that, along with a Japanese satellite operator Broadcasting complementary network of terrestrial Satellite System Corporation (B-SAT) to repeaters, will provide between 10-15 build its next broadcast satellite, designated channels of live television, enhanced BSAT-3b. -
Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite on Track with Post Launch Maneuvers
Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite On Track With Post Launch Maneuvers Solar Arrays Deployed On Schedule Following Successful Launch PALO ALTO, Calif., Feb 27, 2009 (GlobeNewswire via COMTEX News Network) -- Space Systems/Loral (SS/L), a subsidiary of Loral Space & Communications (Nasdaq:LORL) and the leading provider of commercial satellites, today announced that the Telstar 11N satellite built for Telesat, one of the world's leading fixed satellite services operators, is performing post launch maneuvers according to plan. The satellite's solar arrays deployed on schedule several hours after separation, following yesterday's successful launch aboard a Zenit-3SLB rocket from the Baikonur Space Center in Kazakhstan. Tomorrow the satellite will begin firing its thrusters to maneuver into its final geosynchronous orbit. A photo accompanying this release is available at http://www.globenewswire.com/newsroom/prs/?pkgid=5941 "We are proud to know that this high-power satellite will help make information and entertainment more accessible around the world," said John Celli, President and Chief Operating Officer of Space Systems/Loral. "Telstar 11N demonstrates the flexibility of our standard 1300 satellite platform, which in this case was engineered to accommodate a smaller launch vehicle. It is this flexibility together with long term proven reliability that have helped SS/L achieve more than 40 percent market share over the past five years." When it reaches its final geosynchronous orbit, Telstar 11N will support video and data applications in North America, Western Europe, and Africa. Space Systems/Loral designed the satellite with a unique Atlantic Ocean beam, which will help Telesat meet growing demand for mobile broadband from both commercial and government customers in shipping and aviation. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
Technical Profile 4
Technical Profile 4 General Specifications • Orbital location 65° East Scheduled for launch in 2013, Spacecom’s AMOS-4 satellite will establish a new orbital position at 65°E, providing a full range of • Frequency band Ku, Ka satellite services for India, Southeast Asia, Russia, the Middle East • Number of available and other additional service areas. Ku-band Transponders 8 x 108MHz • Number of available AMOS-4's multiple Ku and Ka transponders create a powerful platform, Ka-band Transponders 4 x 216MHz enabling a wide range of cross-band, cross-beam connectivity options. For our customers, this means extensive broadcast and broadband • Service areas reach into the vast urban and rural areas of these regions. Available - Ku-band beams: satellite services for customers include Direct-To-Home (DTH), video two shaped steerable beams covering Russia distribution, VSAT communications and broadband Internet. and India with optional steering to: Southeast Asia, the Middle East, Central Asia, India, South Africa and Central East Europe With its new orbital slot, additional capacity, expanded coverage areas and cross-region connectivity, AMOS-4 positions Spacecom at the - Ka-band beam: one shaped steerable beam covering the Middle forefront of international satellite operators delivering comprehensive East. Optional steering to: Russia, India, China, satellite solutions. Our constellation, which provides comprehensive Central Asia, Southeast Asia, and South Africa coverage for Europe, Africa and the Middle East, also includes our AMOS-2 and AMOS-3 satellites, co-located at the 4°W orbital "Hot • Full cross beam connectivity Ku to Ku Spot”, and AMOS-5 located at 17°E. • Full cross band connectivity Ka to Ku – U/L in Ka beam and D/L in any Ku beam • Expected Launch date .............................................2013 space to expand 44 47 49 51 53 India Beam (Ku-1) Parameters Number of Transponders .............. -
ASTRONAUTICS and AERONAUTICS, 1977 a Chronology
NASA SP--4022 ASTRONAUTICS AND AERONAUTICS, 1977 A Chronology Eleanor H. Ritchie ' The NASA History Series Scientific and Technical Information Branch 1986 National Aeronautics and Space Administration Washington, DC Four spacecraft launched by NASA in 1977: left to right, top, ESA’s Geos 1 and NASA’s Heao 1; bottom, ESA’s Isee 2 on NASA’s Isee 1, and Italy’s Wo. (NASA 77-H-157,77-H-56, 77-H-642, 77-H-484) Contents Preface ...................................................... v January ..................................................... 1 February .................................................... 21 March ...................................................... 47 April ....................................................... 61 May ........................................................ 77 June ...................................................... 101 July ....................................................... 127 August .................................................... 143 September ................................................. 165 October ................................................... 185 November ................................................. 201 December .................................................. 217 Appendixes A . Satellites, Space Probes, and Manned Space Flights, 1977 .......237 B .Major NASA Launches, 1977 ............................... 261 C. Manned Space Flights, 1977 ................................ 265 D . NASA Sounding Rocket Launches, 1977 ..................... 267 E . Abbreviations of References -
The New Commercial Spaceports
The New Commercial Spaceports Derek Webber1 Spaceport Associates, Rockville, Maryland 20852,USA During the second half of the 20th Century, the first launch sites were established, mostly during the ‘fifties and ‘sixties. They were originally a product of the cold war and served military and civil government purposes. They were used for launching sounding rockets, space probes, for missile testing and injecting military, scientific, and eventually commercial satellites into orbit. Initially the sites were in either the USA or the former Soviet Union, but gradually they were introduced in other countries too. Governmental astronaut crews were also sent into orbit from these early launch sites. As the 21st Century begins, a new era is emerging where a fuller range of commercial missions will be undertaken and moreover where public space travel will become common place. This situation ushers in a new kind of launch facility, known as the commercial spaceport. I. Introduction here will be vastly different requirements for the future public space travelers, and their families and friends, T than are normally available at the traditional launch sites built fifty years ago. Indeed, the creation of this emerging kind of facility, the commercial spaceport, is in some ways a very necessary part of the creation of the new space businesses that the twenty-first century offers. It will be essential that, while the space tourism companies are becoming established in order to provide services to the new public space travelers, suitable ground based facilities will be developed in parallel to sustain and support these operations. This paper provides an insight into these commercial spaceport facilities, and their characteristics, in order to assist in both design and business planning processes. -
AMOS-5 Handnook
AMOS-4 Ku-2 Beam Technical Handbook / Version 1.3 January 2015 This document contains proprietary information of Space-Communication Ltd., and may not be reproduced, copied, disclosed or utilized in any way, in whole or in part, without the prior written consent of Space-Communication Ltd. 1. INTRODUCTION Launched in 2013, Spacecom’s AMOS-4 satellite established a new orbital position at 65°E, providing a full range of satellite services for Asia, Russia, the Middle East as well as other service areas. Picture 1- AMOS-4 Deployed View AMOS-4 Technical Specifications / Space-Communications Ltd. th Gibor Sport Building, 20 fl. 7 Menachem Begin St. Ramat-Gan, 52521, Israel Page 2 of 6 Tel. +972 3 7551000 Fax + 972 3 7551001 email: [email protected] 2. GENERAL SPECIFICATIONS Orbital location..........................................................65° East Launch date...............................................................August 2013 Number of available Ku-band Transponders…………..4 x 108MHz Ku-2 beam coverage……………………………………………....Steerable beam 3. FREQUENCY BANDS AND POLARIZATION Uplink frequencies...................................................... 13.00 to 13.25 GHz 13.75 to 14.00 GHz Vertical/ Horizontal Downlink frequencies................................................. 10.70 to 10.59 MHz 11.20 to 11.45 MHz Vertical/ Horizontal The channels' connectivity is fully flexible. AMOS-4 Technical Specifications / Space-Communications Ltd. th Gibor Sport Building, 20 fl. 7 Menachem Begin St. Ramat-Gan, 52521, Israel Page 3 of 6 Tel. +972 3 7551000 Fax + 972 3 7551001 email: [email protected] 4. PAYLOAD CHARACTERISTICS 4.1. EIRP at Beam Peak Band Ku-2 EIRP [dBW] 91.5 4.2. G/T at Beam Peak Band Ku-2 G/T [dB/K] 3.3 4.3. -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1. -
Social Sciences
STUDIES ON SOCIAL SCIENCES Edited By: Assist. Prof. Dr. Özlem KAYA AUTHORS: Prof. Dr. Rui Alexandre CASTANHO Prof. Şafak KAYPAK Assoc. Prof. Dr. Emre KAPLANOĞLU Assoc. Prof. Mihalis (Michael) KUYUCU Assoc. Prof. Dr. Sema YILMAZ GENÇ Assist. Prof. Dr. Özgür Bayram SOYLU Assist. Prof. Dr. Cansu ŞARKAYA İÇELLİOĞLU Assist. Prof. Dr. Zahide ACAR Assist. Prof. Dr. Yavuz Selim DÜGER Dr. Res. Asst. Fetullah BATTAL Dr. Beyza ONUR IŞIKOĞLU Dr. Hassan SYED Dr. İnan ERYILMAZ Dr. M. Büşra ENGİN ÖZTÜRK Dr. Nebiye KONUK Res. Asst. Abdullah AÇIK Res. Asst. M. Rıdvan İNCE Ahmet GÜNDÜZ Copyright © 2019 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution Of Economic Development And Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: [email protected] [email protected] www.iksad.net www.iksad.org.tr www.iksadkongre.org It is responsibility of the author to abide by the publishing ethics rules. Iksad Publications – 2019© ISBN: 978-605-7695-75-8 Cover Design: İbrahim Kaya October / 2019 Ankara / Turkey Size = 16 x 24 cm CHAPTER 9: SATELLITE TECHNOLOGY AND ITS USE IN TURKISH TV BROADCASTING Assoc. Prof. Mihalis (Michael) KUYUCU1 1 İstanbul Aydın University, Communication Faculty, Istanbul, Turkey.