Hierarchical Clustering Analysis Suppcdr.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Hierarchical Clustering Analysis Suppcdr.Cdr Distance Hierarchical joiningclustering 3.0 2.5 2.0 1.5 1.0 0.5 Sinosauropteryx Caudipteryx Eoraptor Compsognathus Compsognathus Compsognathus Compsognathus Megaraptora basal Coelurosauria Noasauridae Neotheropoda non-averostran T non-tyrannosaurid Dromaeosauridae basalmost Theropoda Oviraptorosauria Compsognathidae Therizinosauria T A yrannosauroidea Compsognathus roodontidae ves Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Richardoestesia Scipionyx Buitreraptor Compsognathus Troodon Compsognathus Compsognathus Compsognathus Juravenator Sinosauropteryx Juravenator Juravenator Sinosauropteryx Incisivosaurus Coelophysis Scipionyx Richardoestesia Compsognathus Compsognathus Compsognathus Richardoestesia Richardoestesia Richardoestesia Richardoestesia Compsognathus Richardoestesia Juravenator Richardoestesia Richardoestesia Richardoestesia Richardoestesia Buitreraptor Saurornitholestes Ichthyornis Saurornitholestes Ichthyornis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Richardoestesia Juravenator Scipionyx Buitreraptor Coelophysis Richardoestesia Coelophysis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Coelophysis Richardoestesia Bambiraptor Richardoestesia Richardoestesia Velociraptor Juravenator Saurornitholestes Saurornitholestes Buitreraptor Coelophysis Coelophysis Ornitholestes Richardoestesia Richardoestesia Juravenator Saurornitholestes Velociraptor Saurornitholestes Richardoestesia Coelophysis Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Richardoestesia Buitreraptor Pectinodon Masiakasaurus Ornitholestes Masiakasaurus Ornitholestes Falcarius Falcarius Bicentenaria Zanabazar Proceratosaurus Richardoestesia Eoraptor Velociraptor Velociraptor Velociraptor Saurornitholestes Atrociraptor Coelophysis Coelophysis Coelophysis Richardoestesia Coelophysis Eoraptor Richardoestesia Coelophysis Richardoestesia Eoraptor Masiakasaurus Ornitholestes Velociraptor Velociraptor Richardoestesia Eoraptor Dilong Bambiraptor Eoraptor Dilong Eoraptor Bambiraptor Bambiraptor Saurornitholestes Bambiraptor Bambiraptor Saurornitholestes Saurornitholestes Dilong Richardoestesia Saurornitholestes Bambiraptor Bambiraptor Eoraptor Velociraptor Bambiraptor Bambiraptor Bambiraptor Bambiraptor Eoraptor Bambiraptor Richardoestesia Eoraptor Eoraptor Eoraptor Eoraptor Eoraptor Bambiraptor Masiakasaurus Richardoestesia Eoraptor Eoraptor Masiakasaurus Dilong Dilong Eoraptor Dilong Eoraptor Dilong Eoraptor Ornitholestes Eoraptor Noasaurus Ornitholestes Eoraptor Eoraptor Eoraptor Incisivosaurus Ornitholestes Ornitholestes Dilong Dilong Dilong Eoraptor Eoraptor Coelophysis Noasaurus Falcarius Eoraptor Bambiraptor Ornitholestes Ornitholestes Falcarius Falcarius Falcarius Falcarius Falcarius Masiakasaurus Masiakasaurus Masiakasaurus Masiakasaurus Bambiraptor Masiakasaurus Ornitholestes Eshanosaurus Buitreraptor Pectinodon Troodon Buitreraptor Pectinodon Pectinodon Saurornitholestes Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Saurornitholestes Ypupiara Troodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Pectinodon Velociraptor Saurornitholestes Atrociraptor Troodon Atrociraptor Troodon Troodon Troodon Troodon Troodon Troodon Pectinodon Troodon Zanabazar Zanabazar Ypupiara Pectinodon Eoraptor Dilong Dilong Saurornitholestes Ypupiara Eotyrannus Dromaeosaurus Segnosaurus Segnosaurus Unnamned dromaeosa Unnamned dromaeosa Unnamned dromaeosa Unnamned dromaeosa Unnamned dromaeosa Unnamned dromaeosa Unnamned dromaeosa Ischisaurus Guanlong Deinonychus Deinonychus Deinonychus Deinonychus Ischisaurus Deinonychus Deinonychus Deinonychus Megaraptor Deinonychus Raptorex Saurornitholestes MPMA-12-00D14-97 Guanlong Raptorex Megaraptor Dromaeosaurus Dromaeosaurus Dromaeosaurus Raptorex Dromaeosaurus Dromaeosaurus Guanlong Raptorex Zapsalis Raptorex Saurornitholestes Deinonychus Zapsalis Zapsalis Zapsalis Zapsalis Zapsalis Guanlong Deinonychus Guanlong Unnamned dromaeosa Raptorex Raptorex Raptorex Raptorex Raptorex Unnamned dromaeosa Raptorex Dromaeosaurus Liliensternus Deinonychus Deinonychus Liliensternus Liliensternus Deinonychus Deinonychus Deinonychus Deinonychus Deinonychus Deinonychus Deinonychus Deinonychus Saurornitholestes Masiakasaurus Zapsalis Zapsalis Zapsalis Zapsalis Zapsalis Megaraptor Zapsalis Zapsalis Zapsalis Zapsalis Deinonychus Masiakasaurus Dromaeosaurus Dromaeosaurus Dromaeosaurus Dromaeosaurus Dromaeosaurus Megaraptor Megaraptor Megaraptor Raptorex Raptorex Dromaeosaurus Deinonychus Saurornitholestes Saurornitholestes Dromaeosaurus Dromaeosaurus Dromaeosaurus Dromaeosaurus Dromaeosaurus Atrociraptor Liliensternus Saurornitholestes Proceratosaurus Proceratosaurus Proceratosaurus Saurornitholestes Acheroraptor Masiakasaurus Proceratosaurus Acheroraptor Acheroraptor MPMA-12-00D13-97 Saurornitholestes Acheroraptor Saurornitholestes Proceratosaurus Proceratosaurus Proceratosaurus Eodromaeus Coelophysis Coelophysis Richardoestesia Richardoestesia Richardoestesia Saurornitholestes Saurornitholestes Richardoestesia Richardoestesia Richardoestesia Richardoestesia Richardoestesia Coelophysis Coelophysis Coelophysis Coelophysis Coelophysis Velociraptor Velociraptor Velociraptor Velociraptor Masiakasaurus Saurornitholestes Velociraptor Saurornitholestes Liliensternus Saurornitholestes Velociraptor Saurornitholestes Velociraptor Velociraptor Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Richardoestesia Richardoestesia Saurornitholestes Saurornitholestes Saurornitholestes Liliensternus Liliensternus Proceratosaurus Velociraptor Atrociraptor Masiakasaurus Masiakasaurus Zapsalis Atrociraptor Atrociraptor Deinonychus Deinonychus Atrociraptor Masiakasaurus Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Deinonychus Zapsalis Atrociraptor Atrociraptor Zapsalis Velociraptor Saurornitholestes Saurornitholestes Saurornitholestes Zapsalis Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Zapsalis Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Zapsalis Zapsalis Zapsalis Zapsalis Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Masiakasaurus Atrociraptor Masiakasaurus Masiakasaurus Masiakasaurus Saurornitholestes Atrociraptor Atrociraptor Atrociraptor Atrociraptor Deinonychus Deinonychus Atrociraptor Atrociraptor Atrociraptor Atrociraptor Dilong Saurornitholestes Velociraptor Velociraptor Velociraptor Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Velociraptor Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Saurornitholestes Troodon Saurornitholestes Masiakasaurus Guanlong Dromaeosaurus Dromaeosaurus Dromaeosaurus Atrociraptor Raptorex Raptorex Raptorex Raptorex Segnosaurus Troodon Troodon Troodon Troodon Atrociraptor Troodon Troodon Atrociraptor Troodon Troodon Troodon Troodon Zanabazar Zanabazar Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Troodon Zanabazar Zanabazar Zanabazar Troodon Compsognathus Compsognathus Compsognathus Compsognathus Buitreraptor Compsognathus Compsognathus Buitreraptor Compsognathus Hesperornis Buitreraptor Buitreraptor Sinosauropteryx Buitreraptor Buitreraptor Buitreraptor Buitreraptor Sinosauropteryx Caudipteryx Caudipteryx.
Recommended publications
  • Download Full Article in PDF Format
    A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA Martín D. EZCURRA Laboratorio de Anatomia Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Angel Gallardo 470, Buenos Aires (1405) (Argentina) [email protected] Ezcurra M. D. 2006. — A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA. Geodiversitas 28 (4) : 649-684. Abstract Eucoelophysis baldwini Sullivan & Lucas, 1999 is represented by several post- cranial elements from the Petrified Forest Formation (Norian), New Mexico, USA. Eucoelophysis Sullivan & Lucas, 1999 was widely considered as a coelo- physoid dinosaur by several authors, but the hindlimb anatomy of this genus clearly indicates that it belongs to neither of these groups. The following fea- tures exclude Eucoelophysis from Neotheropoda: absence of oblique ligament groove on caudal surface of femoral head, femoral medial epicondyle small and smoothly rounded, absence of caudal cleft between medial part of the proximal end of the tibia and fibular condyles, cnemial crest low, and fibular crest absent. Moreover, Eucoelophysis lacks dinosaurian synapomorphic characters, but has a plesiomorphic slightly inturned femoral head that prevents its assignment to Dinosauria. Interestingly, the morphology of the femur of Eucoelophysis is extremely similar to that of the basal dinosauriform Silesaurus opolensis Dzik, Key words Dinosauriformes, 2003 from the Late Triassic of Poland. In order to determine the phylogenetic Coelophysoidea, position of Eucoelophysis, a cladistic analysis was carried out, which depicts Eu- Eucoelophysis, coelophysis as a non-dinosaurian dinosauriform.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St.
    [Show full text]
  • Evaluating the Ecology of Spinosaurus: Shoreline Generalist Or Aquatic Pursuit Specialist?
    Palaeontologia Electronica palaeo-electronica.org Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist? David W.E. Hone and Thomas R. Holtz, Jr. ABSTRACT The giant theropod Spinosaurus was an unusual animal and highly derived in many ways, and interpretations of its ecology remain controversial. Recent papers have added considerable knowledge of the anatomy of the genus with the discovery of a new and much more complete specimen, but this has also brought new and dramatic interpretations of its ecology as a highly specialised semi-aquatic animal that actively pursued aquatic prey. Here we assess the arguments about the functional morphology of this animal and the available data on its ecology and possible habits in the light of these new finds. We conclude that based on the available data, the degree of adapta- tions for aquatic life are questionable, other interpretations for the tail fin and other fea- tures are supported (e.g., socio-sexual signalling), and the pursuit predation hypothesis for Spinosaurus as a “highly specialized aquatic predator” is not supported. In contrast, a ‘wading’ model for an animal that predominantly fished from shorelines or within shallow waters is not contradicted by any line of evidence and is well supported. Spinosaurus almost certainly fed primarily from the water and may have swum, but there is no evidence that it was a specialised aquatic pursuit predator. David W.E. Hone. Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected] Thomas R. Holtz, Jr. Department of Geology, University of Maryland, College Park, Maryland 20742 USA and Department of Paleobiology, National Museum of Natural History, Washington, DC 20560 USA.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Screaming Biplane Dromaeosaurs of the Air. June/July
    5c.r~i~ ~l'tp.,ne pr~tl\USp.,urs 1tke.A-ir Written & illustrated by Gregory s. Paul It is questionable whether anyone even speculated that some dinosaurs were feathered until Ostrom detailed the evidence that birds descended from predatory avepod theropods a third of a century ago. The first illustration of a feathered dinosaur was a nice little study of a well ensconced Syntarsus dashing down a dune slope in pursuit of a gliding lizard in Robert Bakker's classic "Dinosaur Renaissance" article in the April 1975 Scientific American by Sarah Landry (can also be seen in the Scientific American Book of the Dinosaur I edited). My first feathered dinosaur was executed shortly after, an inappropriately shaggy Allosaurus attacking a herd of Diplodocus. I was soon doing a host of small theropods in feathers. Despite the logic of feath- / er insulation on the group ancestral birds and showing evidence of a high level energetics, images of feathered avepods were often harshly and unsci- Above: Proposed relationships based on flight adaptations of entifically criticized as unscientific in view of the lack of evidence for their preserved skeletons and feathers of Archaeopteryx, a generalized presence, ignoring the equal fact that no one had found scales on the little Sinornithosaurus, and Confuciusornis, with arrows indicating dinosaurs either. derived adaptations not present in Archaeopteryx as described in In the 1980s I further proposed that the most bird-like, avepectoran text. Not to scale. dinosaurs - dromaeosaurs, troodonts, oviraptorosaurs, and later ther- izinosaurs _were not just close to birds and the origin of flight, but were see- appear to represent the remnants of wings converted to display devices.
    [Show full text]
  • The Pelvic and Hind Limb Anatomy of the Stem-Sauropodomorph Saturnalia Tupiniquim (Late Triassic, Brazil)
    PaleoBios 23(2):1–30, July 15, 2003 © 2003 University of California Museum of Paleontology The pelvic and hind limb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Late Triassic, Brazil) MAX CARDOSO LANGER Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ Bristol, UK. Current address: Departamento de Biologia, Universidade de São Paulo (USP), Av. Bandeirantes, 3900 14040-901 Ribeirão Preto, SP, Brazil; [email protected] Three partial skeletons allow a nearly complete description of the sacrum, pelvic girdle, and hind limb of the stem- sauropodomorph Saturnalia tupiniquim, from the Late Triassic Santa Maria Formation, South Brazil. The new morphological data gathered from these specimens considerably improves our knowledge of the anatomy of basal dinosaurs, providing the basis for a reassessment of various morphological transformations that occurred in the early evolution of these reptiles. These include an increase in the number of sacral vertebrae, the development of a brevis fossa, the perforation of the acetabulum, the inturning of the femoral head, as well as various modifications in the insertion of the iliofemoral musculature and the tibio-tarsal articulation. In addition, the reconstruction of the pelvic musculature of Saturnalia, along with a study of its locomotion pattern, indicates that the hind limb of early dinosaurs did not perform only a fore-and-aft stiff rotation in the parasagittal plane, but that lateral and medial movements of the leg were also present and important. INTRODUCTION sisting of most of the presacral vertebral series, both sides Saturnalia tupiniquim was described in a preliminary of the pectoral girdle, right humerus, partial right ulna, right fashion by Langer et al.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Nanotyrannus’ As a Valid Taxon Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988” Stephen L. Brusatte1*, Thomas D. Carr2, Thomas E. Williamson3, Thomas R. Holtz, Jr.4,5, David W. E. Hone6, Scott A. Williams7 1 School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom, [email protected] 2Department of Biology, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140, USA 3New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104, USA 4Department of Geology, University of Maryland, 8000 Regents Drive, College Park, MD 20742, USA 5Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 6School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom. 7Burpee Museum of Natural History, 737 North Main Street, Rockford, IL 60115, USA *Corresponding author ABSTRACT: There has been considerable debate about whether the controversial tyrannosauroid dinosaur ‘Nanotyrannus lancensis’ from the uppermost Cretaceous of North America is a valid taxon or a juvenile of the contemporaneous Tyrannosaurus rex. In a recent Cretaceous Research article, Schmerge and Rothschild (2016) brought a new piece of evidence to this discussion: the morphology of the dentary groove, a depression on the lateral surface of the dentary that houses neurovascular foramina.
    [Show full text]
  • A Tyrannosauroid Metatarsus from the Merchantville Formation of Delaware Increases the Diversity of Non-Tyrannosaurid Tyrannosauroids on Appalachia
    A tyrannosauroid metatarsus from the Merchantville Formation of Delaware increases the diversity of non-tyrannosaurid tyrannosauroids on Appalachia Chase D. Brownstein Collections and Exhibitions, Stamford Museum & Nature Center, Stamford, CT, USA ABSTRACT During the Late Cretaceous, the continent of North America was divided into two sections: Laramidia in the west and Appalachia in the east. Although the sediments of Appalachia recorded only a sparse fossil record of dinosaurs, the dinosaur faunas of this landmass were different in composition from those of Laramidia. Represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), partial and fragmentary skeletons, and isolated bones, the non-tyrannosaurid tyrannosauroids of the landmass have attracted some attention. Unfortunately, these eastern tyrants are poorly known compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of Delaware, is described in detail. The specimen can be distinguished from A. montgomeriensis and D. aquilunguis by several morphological features. As such, the specimen represents a potentially previously unrecognized taxon of tyrannosauroid from Appalachia, increasing the diversity of the clade on the landmass. Phylogenetic analysis and the morphology of the bones suggest the Merchantville specimen is a tyrannosauroid of “intermediate” grade, thus supporting the notion that Appalachia was a refugium Submitted 18 July 2017 for relict dinosaur
    [Show full text]