General Disclaimer One Or More of the Following Statements May Affect

Total Page:16

File Type:pdf, Size:1020Kb

General Disclaimer One Or More of the Following Statements May Affect General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) ( y 19E ,._ MASS SPECTROMETRY IN STRUCTURAL AND STEREOCHEMI£AL PROBLEMS CLXXVIII. The Electron-Impact Promoted Fragmentation of 1,2-Cyclohexene Oxide M. Karen Strong, Peter Brown, and Carl Djerassi (Department of Chemistry, Stanford University, Stanford, California, 94305 U.S.A.) Abstract. The mass spectrum of 1,2-Cyclohexene oxide and important data from the spectra of three deuterium labeled analogs have been recorded and mechanistic rationalizations are given for the most important frag- mentation processes observed. Multiple mechanisms are required to ex- plain the indicated peak shifts in the labeled analogs for many of the ions discussed, thus demonstrating again the care that needs to be exer- cised in the interpretation of the mass peaks of relatively simple mole- cules. Until recent years the mass spectral fragmentation patterns of epoxides have not been extensively studied. Detailed analyses of a series of aliphatic epoxides,l a,8-epoxyketones, 2 and aromatic alkene oxides have been reported. Discussions of the mass spectra of 8-phenylglycidic esters and amides and long chain aliphatic epoxy esters have also appeared. In addition, isolated spectra, partial analyses, and high resolution data for various other epoxides have been published. 6 No de- tailed analysis of the mass spectra of alicyclic epoxides has appeared to date, al- though a postulated fragmentation scheme for 1,2-epoxy-l-methylcyclohexane has been proposed, 1 and the spectra of this compound, 3,4-epoxymenthane, and 1,2-epoxymenthane 7b have been presented ar;d discussed with respect to the formation of m/e 69. There- fore, we decided to examine in detail the mass spectral fragmentation of the parent Cyclohexene oxide (I, Fig. 1 and 2) by means of deuterium labeled analogs (II-IV), medium resolution data, 8 and metastable findings for both the labeled and unlabeled For part CLXXVII see G. Eadon, J. Diekman, and C. Djerassi, submitted for publication. t Taken from the M.S. thesis of M. Karen Strong. f Present address: Department of Chemistry, Arizona State University, Tempe, Arizona 85281. N64;2 S g42 e c[ 1 NUM• wi - j nNRyl (J.AO[[/ (COD[! `i3333 n _ '^ Q^ /12 lNA[A CR - OR TMX WR AD NYM[[RI (CATEGORYL- _ _ 2 - cyclohexene oxides. D D D D D0 D o C>O D [:> aL D D D I II III IV The estimated deuterium content of each analog is listed in Table 1. Upon con- sideration of Figure 1, it became apparent that the deuterium incorporation in the three labeled analogs could not be calculated from the molecular ion region of the mass spectra of the epoxides. The very large M-1 peak (m/e 97), which apparently arises from random loss of a proton from all six carbons of the ring, necessitated a circumvention. A bracketing of isotopic purity was possible for epoxides III and IV, since the isotopic content of the precursor olefin and the acid hydrolysis product diol had been determined. The deuterium content of epoxide II, however, could be ascertained only from the precursor diol because the labeled cyclohexene was not iso- lated in pure form prior to epoxidation. Table 1. Isotopic content of the labeled 1,2-cyclohexene oxide. Compound %d0 %dl %d2 %d3 %d4 %d5 II - - 4t 8t 88t - III - - - - 97t-100 0*-3t IV 0*-1t 8*-llt 88t-92 - - - t Data calculated from the spectra of the corresponding diols. Data calculated from the spectra of the precursor olefins. Three tautomeric shifts, shown below, can be postulated to occur prior to frag- It is recognized that ions produced by the rearrangements suggested here may differ in energy from the corresponding ions produced by direct ionization of a molecule (for example, cyclohexanone). It is also recognized that these two energetically different ions may produce fragmentation patterns differing slightly in peak in- tensities. Nevertheless, the arguments presented here seem sufficiently valid to warrant consideration. - 3 - mentation. The first of these, labeled AA, has been postulated to occur in cleavages observed in aliphatic epoxides 1 and aromatic alkene epoxides. 3 In the present situation, this shift would give rise to the molecular ion of cyclohexanone, which has been studied in great.detail. 9 It has principal fragmentation peaks at m/e 42, We 55 (C3H3O), We 69, and m/e 70. The latter two peaks are present in 30% and 20% relative: abundance with respect to the base peak of m/e 55. In the spectrum of I, 41% of the m/e 55 peak is C3H3O and this portion could only partly arise from the indicated tautomeric shift and subsequent fragmentation, since the spectra of the deuterated analogs II-IV demonstrate shifts in addition to those explained by this process. Therefore this re- arrangement cannot explain the entire C3H3O portion of m/e 55, if indeed any frag- mentation occurs by this method. The intensity of the We 69 and m/e 70 peaks in the spectrum of cyclohexene oxide cannot be explained by this tautomeric shift AA, since, the relative contribution to either peak through such an intermediate would be minimal. Therefore, it would seem that cyclohexene oxide, a simple cyclic epoxide, does not fragment to any great degree via this route. The tautomeric shift BB results in a species corresponding to the molecular ion 10 of 2-cyclohexene-1-ol, whose mass spectrum is reproduced in Figure 3. The corapo- sition of the base peak of mass 70 is 100% C4H6O and is postulated to arise from the molecular ion by a retro-Diets-Alder fragmentation 11 (see scheme D). Medium reso- lution data (see Table 3) for the m/e 70 peak of cyclohexene oxide (27% relative abundance) show it to be 93% C 4H6O. Therefore, it is conceivable that part of the peak in the epoxide could a-:se through the ionized cyclohexenol intermediate. The entire peak cannot be attributed to this process, however, since the deuterated analogs display mass shifts in addition to those explained by the fragmentation of the tauto- meric species BB. Assuming that the fragmentation pattern of 2-cyclohexene-1-ol remains constant, the only other fragmentation peaks of I to which the tautomeric alcohol might contribute substantially would be We 55 and We q3. The ion of mass 55 in the spectrum 4 - of cyclohexenol is principally oxygen-containing, while that in the spectrum of cyclo- hexene oxide is 41% C H 0 (see Table 3). A metastable peak at m/e 43.2 in the un- 3 3 labeled spectrum (see Table 2) and appropriate metastable peaks in the spectra of the deuterium analogs II-IV substantiate a possible transition from the m/e 70 ion arising from the tautomeric cyclohexenol to the oxygen-containing ion of mass 55. The m/e 83 peak of cyclohexene oxide could result in part from the loss of methyl from the molecular ion of 2-cyclohexene-1-ol (see process B'), since the predicted frag- mentation is supported by the mass shifts observed in the labeled analogs. However, H 0t 0t BB —^ t bH CC CO this type of fragmentation is not the principal mode of formation of m/e 83, since the contribution of the tautomeric species to this peak would have as a maximum approx- imately one-third of the relative abundance of We 70 (27 units), clearly a minor (10%) contribution to the base peak of cyclohexene oxide. The third possible tautomeric shift CC would give rise to the molecular ion of tetrahydro-oxepin. The mass spectrum of this compound is unknown, and therefore, this rearrangement cannot be discounted or confirmed. The base peak of both the 70 eV spectrum (Fig. 1) and the low voltage spectrum (nominal voltage 12 eV, Fig. 2) is m/e 83. With the exception of the region around m/e 42, the spectra are quite similar. The only substantial difference is the intensity of the remaining peaks, which, as expected, decrease at low voltage. This decrease is fairly uniform, except for m/e 68 and m/e 56, which seem to increase with respect to their neighboring ions, indicating that these ions are probably formed by a primary - 5 - fragmentation process, or by a rearrangement in the molecular ion prior to cleavage. 12 Metastable peaks are observed in the high voltage spectrum of I for the transitions given in Table 2. The spectra of II-IV demonstrate metastable peaks corresponding to the loss of the species and/or deuterium labeled analogs of the species listed in Table 2. The composition of the important fragment ions, obtained on a dual-focusing MS-9 mass spectrometer, are given in Table 3. Table 2. Metastable Reaks and possible transitions for 1,2-cyclohexene oxide. Metastable peak observe' Transition Species lost 96.0 98 --> 97 H' 70.3 98 83 CH 3* 48.6 98 69 C2H5 47.2 98 68 CH2O 43.2 70 55 CH 3' 36.5 83--> 55 CO Table 3.
Recommended publications
  • Cyclohexane Oxidation Continues to Be a Challenge Ulf Schuchardt A,∗, Dilson Cardoso B, Ricardo Sercheli C, Ricardo Pereira A, Rosenira S
    Applied Catalysis A: General 211 (2001) 1–17 Review Cyclohexane oxidation continues to be a challenge Ulf Schuchardt a,∗, Dilson Cardoso b, Ricardo Sercheli c, Ricardo Pereira a, Rosenira S. da Cruz d, Mário C. Guerreiro e, Dalmo Mandelli f , Estevam V. Spinacé g, Emerson L. Pires a a Instituto de Qu´ımica, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil b Depto de Eng. Qu´ımica, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil c College of Chemistry, University of California, Berkeley, CA 94720, USA d Depto Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, 45650-000 Ilhéus, BA, Brazil e Universidade Federal de Lavras, Lavras, MG, Brazil f Instituto de Ciências Biológicas e Qu´ımicas, PUC-Campinas, 13020-904 Campinas, SP, Brazil g Sup. Caracterização Qu´ımica, IPEN, 05508-900 São Paulo, SP, Brazil Received 3 October 2000; received in revised form 21 December 2000; accepted 28 December 2000 Abstract Many efforts have been made to develop new catalysts to oxidize cyclohexane under mild conditions. Herein, we review the most interesting systems for this process with different oxidants such as hydrogen peroxide, tert-butyl hydroperoxide and molecular oxygen. Using H2O2, Na-GeX has been shown to be a most stable and active catalyst. Mesoporous TS-1 and Ti-MCM-41 are also stable, but the use of other metals such as Cr, V, Fe and Mo leads to leaching of the metal. Homogeneous systems based on binuclear manganese(IV) complexes have also been shown to be interesting. When t-BuOOH is used, the active systems are those phthalocyanines based on Ru, Co and Cu and polyoxometalates of dinuclear ruthenium and palladium.
    [Show full text]
  • POLYMERISATION of SOME CYCLIC ETHERS and ALLYL COMPOUNDS at Higf PRESSURES
    POLYMERISATION OF SOME CYCLIC ETHERS AND ALLYL COMPOUNDS AT HIGf PRESSURES. THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE UNIVERSITY OF LONDON BY MUSTAFIZUR RAHMAN. DEPARTMENT OF CHEMICAL ENGINEERING AND CHEMICAL TECHNOLOGY, IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON, S.W.7. SEPTEMBER, 1967. ABSTRACT. The polymerizations of seven cyclic ethers and two allyl compounds have been studied at high pressures (up to 12,000 atm.). BF3.(C2H5)20 was usually used as catalyst to polymerize the ethers, except for 1,4-epoxycyclohexane with wilich the co-catalyst epichlorohydrin was employed. Benzoyl peroxide and azo-isobutyronitrile were used to polymerize the allyl compounds. The polymerizations of 1,4-epoxycyclohexane and tetrahydrofuran (THF) have been studied most extensively. From the lag rate vs. pressure graphs, "overall volumes of activation" Air*pol were calculated and compared with those for vinyl compounds. Conductances of solutions of BP3.(C2H5)20 in tetrahydropyran were measured and the results discussed in relation to the kinetic measurements. The variation of the polymerization ceiling temperature of THF with pressure was determined between 1 and 2500 atm. The polymerizations of cyclohexene oxide, styrene cxide, cyclooctene oxide, tetrahydropyran, triallyl phosphate, triallyl phosphite and the co-polymerization of triallyl phosphate and styrene, have been studied briefly. The results, wherever possible, have been explained in terms of existing ideas. 3. Polymers from viscous liquid to insoluble solids were obtained during this investigation and the molecular weights were determined, where possible. 4 ACKNOWLEDGEBENTS. The author wishes to express his gratitude to Dr. K.E.Weale for his kind supervision, valuane guidance and constant encouragement during the course of this study.
    [Show full text]
  • Chem 314 Preorganic Evaluation
    Organic Reaction Guide Beauchamp 1 Chem 316 / Beauchamp Reactions Review Sheet Name SN2 Reactions - special features: biomolecular kinetics Rate = kSN2[RX][Nu ], single step concerted reaction, E2 is a competing reaction o o o o relative order of reactivity: CH3X > 1 RX > 2 RX >> 3 RX (based on steric hinderance, no SN2 at 3 RX) allylic & benzylic RX are very reactive, adjacent pi bonds help stabilize transition state and lower TS energy (Ea) o complete substitution at Cα (3 RX) or Cβ (neopentyl pattern) almost completely inhibits SN2 reactions vinyl & phenyl are very unreactive, bonds are stronger and poor backside approach leaving group ability: OTs = I > Br > Cl in neutral or basic conditions (just like E2, SN1 adn E1), and neutral molecule leaving groups are good from protonated, cationic intermediates in acid conditions, + + + + -OH2 , -ORH , -OR2 , -NR3 , etc. we will consider all anions, ammonia, amines, thiols and sulfides to be strong nucleophiles (favors SN2 and E2 reactions) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and - + + - + - some are mainly bases (t-BuO K , Na H2N , Na H ) polar, aprotic solvents work best for SN2 reactions because nucleophiles are relatively unencombered for electron doantion (dimethyl sulofoxide = DMSO, dimethylformamide = DMF, acetonitrile = AN, acetone, etc.) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and we will consider neutral solvent molecules such as water, alcohols and acids to be weak nucleophiles (favors SN1 and E1) stereoselectivity: 100% inversion of configuration from backside atack regioselectivity: reacts at carbon with leaving group, completely unambiguous chemoselectivity: N/A The following list is designed to emphasize SN2 reactions.
    [Show full text]
  • Cyclohexene Oxide/Carbon Dioxide Copolymerization by Chromium(III) Amino-Bis(Phenolato) Complexes and MALDI- TOF MS Analysis of the Polycarbonates
    Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Information for Cyclohexene Oxide/Carbon Dioxide Copolymerization by Chromium(III) Amino-bis(phenolato) Complexes and MALDI- TOF MS Analysis of the Polycarbonates Katalin Devaine-Pressing,† Louise N. Dawe,†,‡ and Christopher M. Kozak*,† † Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada. ‡ C-CART X-ray Diffraction Laboratory, Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada. Current address: Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W. Waterloo, Ontario, N2L 3C5, Canada Experimental S3 Table S1. Crystallographic and structure refinement data for 1·THF, 1·DMAP and 2·THF S10 Figure S1. MALDI-TOF mass spectrum of 1·THF S11 Figure S2. MALDI-TOF mass spectrum of 1·THF higher mass region. S11 Figure S3. MALDI-TOF mass spectrum of 2·THF S12 Figure S4. MALDI-TOF mass spectrum of 1·DMAP S13 Figure S5. UV-Vis absorption spectrum of 1·THF S14 Figure S6. UV-Vis absorption spectrum of 2·THF S14 Figure S7. UV-Vis absorption spectrum of 1·DMAP S15 Figure S8. IR spectrum of 1·THF S16 Figure S9. IR spectrum of 2·THF S16 Figure S10. IR spectrum of 1·DMAP S17 Figure S11. The first 20 min of the reaction profile of the growth of the polycarbonate ν(C=O) BuBuPy catalyzed by 1·THF, 1·DMAP and CrCl[O2NN’] S17 Figure S12. The second stage of the propagation of the reaction catalyzed by BuBuPy CrCl[O2NN’] .
    [Show full text]
  • The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol Over Highly Active Au/Graphite and Au/Graphene Catalysts
    catalysts Article The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol over Highly Active Au/Graphite and Au/Graphene Catalysts Owen Rogers 1, Samuel Pattisson 1, Joseph Macginley 1 ID , Rebecca V. Engel 1, Keith Whiston 2, Stuart H. Taylor 1,* ID and Graham J. Hutchings 1,* ID 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; [email protected] (O.R.); [email protected] (S.P.); [email protected] (J.M.); [email protected] (R.V.E.) 2 INVISTA Performance Technologies, the Wilton Centre, Wilton, Redcar TS10 4RF, UK; [email protected] * Correspondence: [email protected] (S.H.T.); [email protected] (G.J.H.); Tel.: +44-2920-874-062 (S.H.T.); +44-2920-874-059 (G.J.H.) Received: 2 July 2018; Accepted: 28 July 2018; Published: 31 July 2018 Abstract: The selectivity and activity of gold-catalysts supported on graphite and graphene have been compared in the oxidation of cyclohexene. These catalysts were prepared via impregnation and sol immobilisation methods, and tested using solventless and radical initiator-free reaction conditions. The selectivity of these catalysts has been directed towards cyclohexene epoxide using WO3 as a co-catalyst and further to cyclohexane diol by the addition of water, achieving a maximum selectivity of 17% to the diol. The sol immobilisation catalysts were more reproducible and far more active, however, selectivity towards the diol was lower than for the impregnation catalyst. The results suggest that formation of cyclohexane diol through solventless oxidation of cyclohexene is limited by a number of factors, such as the formation of an allylic hydroperoxyl species as well as the amount of in situ generated water.
    [Show full text]
  • Oxidation of Cyclohexene with H2O2 Catalyzed by Vanadium Based Polyoxometalates Doped Modified Clays As Green Catalysts S
    Vol. 132 (2017) ACTA PHYSICA POLONICA A No. 3 Special issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016) Oxidation of Cyclohexene with H2O2 Catalyzed by Vanadium Based Polyoxometalates Doped Modified Clays as Green Catalysts S. Boudjemaa;b;∗, H. Rabaha and A. Choukchou-Brahama aLaboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Sciences, University of Tlemcen, Algeria bKasdi Merbah University, Faculty of Hydrocarbons, Renewable Energy, Earth Sciences and Universe, Ouargla, Algeria The catalytic performance of supported heteropolyacids in various liquid–solid and gas–solid heterogeneous re- actions may be affected by the choice of support and/or the method of heteropolyacid deposition. Vanadium substi- tuted polyphosphomolybdate with the Keggin structure H4[PVMo11O40]·13H2O (PVMo) was dispersed throughout acid activated bentonite (clay from Hammam Boughrara, Maghnia, Algeria). A series of catalysts were prepared via modified impregnation. Modified preparation method employed ultrasonication as a means of the dispersion homogenization, followed by freeze-drying. The catalysts were characterized by the Brunauer–Emmett–Teller, the Fourier transform infrared, and 31P solid-state magic angle spinning-NMR spectroscopy. The catalytic performance of PVMo/Hmont was evaluated in the oxidation of cyclohexene. Intact Keggin anions were preserved on Hmont after deposition aided by ultrasonication. The obtained results showed that a better catalytic activity can be ob- tained with PVMo/bentonite (98% of conversion and 89% of cyclohexene oxide), by drop addition of H2O2, for 3 h. DOI: 10.12693/APhysPolA.132.469 PACS/topics: heteropolyacids, bentonite, acid catalyst, cyclohexene oxidation, hydrogen peroxide 1. Introduction lished on the immobilization of heteropolyacids on vari- ous supports including silica, alumina, titania, and zeo- Cyclohexene oxidation has been the subject of exten- lites [6–10].
    [Show full text]
  • Cyclohexene Oxide 286-20-4 NTP NOMINATION HISTORY and REVIEW
    Cyclohexene oxide 286-20-4 NTP NOMINATION HISTORY AND REVIEW A. Nomination History 1. Source: National cancer Institute 2. Recommendations: -Mechanistic carcinogencity studies -Synergism studies or two-stage studies - Test with benzene or other chemicals deemed appropriate by NTP 3. Rationale/Remarks: -High annual production volume -Potential for human exposure based on its use as a research and industrial chemical -Environmental contaminant -Representative cycloalkene monoepoxide; suspicion of carcinogenicity as a member of the epoxides· chemical class 4. Priority: High 5. Date of Nomination: 4/93 B. Interagency Committee for Chemical Evaluation and Coordination Review \ 1. Date of Review: 2. Recommendations: 3. Priority: 4. NTP Chemical Selection Principles: 5. Rationale/Remarks: "' 286-20-4 Cyclohexene oxide SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry Name: 286-20-4 Chemical Abstracts Name: 7-oxabicyclo[ 4.1.0]heptane(9CI,8CI) Synonyms and Trade Names: Cyclohexene oxide; cyclohexene epoxide; 1,2­ epoxycyclohexane; cyclohexane oxide tetramethyleneoxirane; CO; CHO Structure. Molecular Formula and Molecular Weight Mol. wt.: 98.15 Chemical and Physical Properties Description: Colorless liquid with strong (pungent, offensive) odor (Sax & Lewis, 1987;Uniroyal, 1990) Boiling Point 129-131°C; 266°F (Sax & Lewis, 1987; Uniroyal, 1990; Weast, 1989) Melting Point <-10°C (Weast, 1989) Solubilitv: Very soluble in benzene; soluble in alcohol, ether, acetone, chloroform; low water solubility (-0.5 g/L) (Sax & Lewis, 1987; BASF, 1990; Weast, 1989) DensitY: 0.967 g/cc@ 25°/4°C (Sax & Lewis, 1987; Uniroyal, 1990) Prepared for NCI by Technical Resources, Inc. under Contract No. N01-CP-56019 (9/91; rev. 2/93) 6'( II 286-20-4 Cyclohexene oxide Vapor Pressure: 12 mbar (BASF, 1990) Flash Point 27oC; 81 oF (Sax & Lewis, 1989; Uniroyal, 1990.) Stabiiitv: Stable at ambient temperatures and pressures.
    [Show full text]
  • Chemical Inventory
    Name CAS Number SOP Status Supplier Size Qt. Location Received Purchaser Hazards (1,3-bis)2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene[2-(i-propoxy)-5-(N,N-dimethyl aminosulfonyl)phenyl]methylene Ru(II) dichloride918870-76-5 100mg 1 Storage # 3 (2-bromoethyl) benzene 98% 103-63-9 100G 2 Storage # 3 (3-aminopropyl)triethoxysilane 919-30-2 Sigma 100 mL 1 Storage #3 Apr-13 Stephanie Flammable, toxic, corrosive (3-aminopropyl)trimethoxysilane 13822-56-5 Sigma 100 mL 1 small fridge May-13 Stephanie Corrosive, irritant (3-iodopropyl)trimethoxysilane 14867-28-8 1 Storage # 2 (3-mercaptopropyl) trimethoxysilane 95% 4420-74-0 25g 1 Shelf # 3 (3-mercaptopropyl)-trimethoxysilane 95% 4420-74-0 25G 2 Storage # 2 (iodomethyl)trimethylsilane 4206-67-1 5mL 1 Storage # 2 (Propan-2-yloxy) benzene 2741-16-4 Enamine 1g 1 Storage # 3 Nov-14 Zach (Trimethylsilyl)methyllithium, 1.0M solution in pentane 1822-00-0 SOP on file-Lithium reagents Aldrich 50ml 1 Large fridge Highly flammable 0.5% Rhodium on 1/8 Alumina pellets 7440-16-6 25g 2 Shelf # 1 1% Pt-Al-1DR 7440-06-4 74292-90-5 0.05kg 1 Shelf # 1 1-(2-hydroxyethyl)-2-pyrolidinone 98% 3445-11-2 5ml 2 Storage # 3 1-(Trimethylsiloxy)cyclohexene 6651-36-1 Alfa 1g 1 Small fridge Mar-14 Bethany 1,1,1,3,3,3-Hexafluoro-2-propanol, 99+% 920-66-1 25g 1 Storage # 4 1,1,1,3,3,3-Hexafluoro-2-propanol-d9, 99 atom%D 38701-74-5 1g 2 Storage #7 1,1,1,3,3,3-hexamethyl-disilane 99.9% 1450-14-2 100mL 2 Storage # 2 1,1,2,2-Tetra chloroethane-D2 (D, 99.6%) 33685-54-0 SOP on file- Acutely toxic chem.
    [Show full text]
  • In Presenting the Dissertation As a Partial Fulfillment of The
    In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this dis­ sertation which involves potential financial gain will not be allowed without written permission. 7/2^/68 THE REACTION OF ATOMIC OXYGEN WITH ORGANIC COMPOUNDS A THESIS Presented to The Faculty of the Graduate Division by Arthur Joseph Mosher In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology March 1970 THE REACTION OF ATOMIC OXYGEN WITH ORGANIC COMPOUNDS Approved: Uhaiaraan •9 Date Approved by Chairman ACKNOWLEDGMENTS I would like to thank Dr. Erling Grovenstein, Jr. for acting as my research advisor; without his penetrating analysis this thesis would not have been possible. I would also thank Drs. Thomas F. Moran and Charles J_. Liotta for serving on the reading committee. Discussions with the latter were quite beneficial to this thesis. Special recognition is due to John McKelvey, whose exciting mind and cheerful disposition are a source of inspiration to all.
    [Show full text]
  • Catalogue of China Dangerous Chemical, Ver. 2002
    Catalogue of China Dangerous Chemical, Ver. 2002 China DG No. Category Sub-Category Chinese Name Chinese Alias English Name English Alias CAS No. UN No. No Barium azide,dry or 迭氮(化)钡[干的或含水 1 Explosive 1.1 11018 wetted with less than 18810-58-7 224 <50%] 50% water,by mass Lead azide, wetted with not less than 20% 迭氮(化)铅[含水或水加 2 Explosive 1.1 11019 water, or mixture of 13424-46-9 129 乙醇≥20%] alcohol andwater,by mass 3 Explosive 1.1 11020 重氮甲烷 Diazomethane 334-88-3 Diazodinitrophenol,wette d with not less than 40% 二硝基重氮酚[含水或水 4 Explosive 1.1 11021 重氮二硝基苯酚 water,or mixture of Dinitrodiazophenol 87-31-0 74 加乙醇≥40%] alcohol and water,by mass Lead trinitroresorcinate,wetted 三硝基间苯二酚铅[含水 with not less than 20% 5 Explosive 1.1 11022 收敛酸铅 Lead styphnate 63918-97-8 130 或水加乙醇≥20%] water,or mixture of alcohol and water,by mass Guanyl nitrosaminoguanylidene 脒基亚硝氨基脒基叉肼 6 Explosive 1.1 11023 hydrazine, wetted with 113 [含水≥30%] not less than30% water,by mass Guanyl nitrosaminoguanyltetraz 脒基亚硝氨基脒基四氮烯 ene, wetted with not less 7 Explosive 1.1 11024 [含水或水加乙醇≥ 四氮烯; 特屈拉辛 Tetrazene 109-27-3 114 than 30% water,or 30%] mixture of alcohol and water,by mass www.randis.cn 1/215 Catalogue of China Dangerous Chemical, Ver. 2002 China DG No. Category Sub-Category Chinese Name Chinese Alias English Name English Alias CAS No. UN No. No Mercury fulminate,wetted with not less than 20% 雷(酸)汞[含水或水加乙 8 Explosive 1.1 11025 water,or mixture of 628-86-4 135 醇≥20%] alcohol and water,by mass Perchloric 9 Explosive 1.1 11026 高氯酸[浓度>72%] 7601-90-3 acid(containing>72%) Nitroguanidine,dry
    [Show full text]
  • Aerobic Catalytic Oxidation of Cyclohexene Over Tizrco Catalysts
    catalysts Article Aerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts Tong Liu 1,2,3, Haiyang Cheng 1,2,*, Weiwei Lin 1,2, Chao Zhang 1,2, Yancun Yu 1,2 and Fengyu Zhao 1,2,* 1 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; [email protected] (T.L.); [email protected] (W.L.); [email protected] (C.Z.); [email protected] (Y.Y.) 2 Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 3 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (H.C.); [email protected] (F.Z.); Tel.: +86-431-8526-2454 (H.C.); Tel./Fax: +86-431-8526-2410 (F.Z.) Academic Editor: Michalis Konsolakis Received: 8 December 2015; Accepted: 12 January 2016; Published: 29 January 2016 Abstract: The aerobic oxidation of hydrocarbon is of great significance from the viewpoints of both fundamental and industry studies as it can transfer the petrochemical feedstock into valuable chemicals. In this work, we investigated the aerobic oxidation of cyclohexene over TiZrCo catalysts, in which 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion of 92.2%, which are comparable to the best results reported for the aerobic oxidation of cyclohexene over heterogeneous catalysts. The influences of kinds of solvent, substrate concentration and reaction temperature were evaluated. Moreover, the catalytic performance of the TiZrCo catalyst and the main catalytic active species were also discussed.
    [Show full text]
  • Structure-Reactivity Relations for Thiol-Disulfide Interchange Janette Houk and George M
    J. Am. Chem. SOC.1987, 109, 6825-6836 6825 ‘H NMR (22 OC, benzene-d6): 6 3.26 (s, OSCMe), 3.03 (s, 2JwH= A systematic search of a limited hemisphere of reciprocal space lo- 8.54 Hz, CH2CMe3next to S), 2.85 (s, ’JWH= 9.98 Hz, CH2CMe3next cated a set of diffraction maxima with systematic absences corresponding to Oh 2.32 (s. O,CMe), 2.26 (s,.- 0,CMe trans to OSCMe) 1.49, 1.46 (s, to the unique monoclinic space group P2,/a. Subsequent solution and CH2CMe3): refinement confirmed this choice. IR: 324 (m), 333 (m), 375 (w), 450 (w), 620 (w), 627 (w), 668 (ms), The structure was solved by a combination of direct methods 680 (m). 907 (mw), 932 (w). 1018 (w), 1040 (w), 1088 (vs), 1175 (ms), (MULTAN~S)and Fourier techniques and refined by full-matrix least 1202(mw), 1236 (ms), 1349 (m), 1361 (ms), 1374 (ms), 1438 (vs), 1460 squares. Many of the hydrogen atom positions were visible in a difference (s), 1492 (m) cm-I. Fourier phased on the non-hydrogen parameters. The positions of all W2(np)2(02CNMe2)4.In a Schlenk flask W2(np)2(NMe2)4(0.30 g, hydrogens were calculated and placed in fixed idealized positions (d(C- 0.44 mmol) was dissolved in CH2C12and then frozen in liquid N,. A H) = 0.95 A) for the final cycles. The hydrogen atoms were assigned large excess (>4 equiv) of C02was condensed into the flask. The so- a thermal parameter of 1 + Bise of the carbon atom to which they were lution was then slowly warmed to room temperature while the flask was bound.
    [Show full text]