The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol Over Highly Active Au/Graphite and Au/Graphene Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol Over Highly Active Au/Graphite and Au/Graphene Catalysts catalysts Article The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol over Highly Active Au/Graphite and Au/Graphene Catalysts Owen Rogers 1, Samuel Pattisson 1, Joseph Macginley 1 ID , Rebecca V. Engel 1, Keith Whiston 2, Stuart H. Taylor 1,* ID and Graham J. Hutchings 1,* ID 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; [email protected] (O.R.); [email protected] (S.P.); [email protected] (J.M.); [email protected] (R.V.E.) 2 INVISTA Performance Technologies, the Wilton Centre, Wilton, Redcar TS10 4RF, UK; [email protected] * Correspondence: [email protected] (S.H.T.); [email protected] (G.J.H.); Tel.: +44-2920-874-062 (S.H.T.); +44-2920-874-059 (G.J.H.) Received: 2 July 2018; Accepted: 28 July 2018; Published: 31 July 2018 Abstract: The selectivity and activity of gold-catalysts supported on graphite and graphene have been compared in the oxidation of cyclohexene. These catalysts were prepared via impregnation and sol immobilisation methods, and tested using solventless and radical initiator-free reaction conditions. The selectivity of these catalysts has been directed towards cyclohexene epoxide using WO3 as a co-catalyst and further to cyclohexane diol by the addition of water, achieving a maximum selectivity of 17% to the diol. The sol immobilisation catalysts were more reproducible and far more active, however, selectivity towards the diol was lower than for the impregnation catalyst. The results suggest that formation of cyclohexane diol through solventless oxidation of cyclohexene is limited by a number of factors, such as the formation of an allylic hydroperoxyl species as well as the amount of in situ generated water. Keywords: cyclohexene; cyclohexane diol; adipic acid; catalytic oxidation; gold; graphene 1. Introduction In recent decades, the impact of chemistry on society has largely been influenced by its capacity to make new molecules in an environmentally considerate and sustainable way. This has led to the development of catalysts with increasing efficiency and selectivity, which, when combined with the improvements in reaction engineering and purification methods, leads to greater atom economies and energy efficiencies [1]. The industrial production of adipic acid historically relies on the aerobic oxidation of cyclohexane at 125–165 ◦C and 8–15 atm, usually in the presence of a homogenous cobalt-based catalyst. The resulting product mixture of cyclohexanol and cyclohexanone, known as KA oil, is then oxidised by nitric acid to adipic acid [2,3]. Alternative technology based on cyclohexene as a raw material for cyclohexanol synthesis is also now practiced commercially, with the product still being converted to adipic acid using nitric acid oxidation. The process for producing adipic acid from KA oil via nitric acid oxidation historically produced 400,000 metric tons of N2O globally. N2O has a global warming potential approximately 300 times that of CO2 [4]. However, recent catalytic and thermal abatement of these emissions within both adipic acid and nitric acid processes has resulted in very significant reductions in attendant N2O emissions, and therefore of their environmental significance. Catalysts 2018, 8, 311; doi:10.3390/catal8080311 www.mdpi.com/journal/catalysts Catalysts 2018, 8, 311 2 of 10 However, in principle, processes for adipic acid synthesis that avoid the use of nitric acid as an oxidant eliminate concerns with N2O emissions [5–7] and offer a higher atom economy. Routes to adipic acid based on aerobic oxidation with air as the terminal oxidant are therefore of continuing research interest. The possibility of using cyclohexene as a feedstock has lately become an option because of recent improvements in the partial hydrogenation of benzene to cyclohexene in the Asahi process [8]. The higher reactivity of cyclohexene allows it to be oxidised at lower temperatures by oxidants such as O2 and hydrogen peroxide, and therefore avoids N2O formation when using nitric acid. The first step in forming adipic acid from cyclohexene is epoxidation of the alkene, which can subsequently undergo hydrolysis to form cyclohexane diol. The diol can then be converted into adipic acid through the oxidative cleavage of the C–C bond, as demonstrated by Obara et al. [9] and Rozhko et al. [10] However, the prospect of achieving the one-step conversion of cyclohexene to adipic acid is hindered by the low miscibility of cyclohexane diol in cyclohexene, therefore, a second step would be required to form adipic acid. Current epoxidations of cyclohexene require the use of stoichiometric oxygen donors such as chromates, permanganates, and periodates, which could result in complex heat management needs and by-products that are harmful to the environment [11]. Peroxides are also commonly used to act as radical initiators [12] or stoichiometric oxidants, however, these can increase the cost of the process and produce unwanted waste [13]. High yields of cyclohexene oxide are also mostly achieved using specific solvents, which can become uneconomical and contribute to the high levels of waste produced [14]. Therefore, the most sustainable alternative would be to run the reaction under solventless conditions using air [15] or oxygen [16] as the oxidant. However, this leads to lower selectivity where mainly products of allylic oxidation are observed [17,18]. In previous work, Sato et al. achieved the one-pot solventless oxidation of cyclohexene to adipic acid in the presence of an Na2WO4·2H2O catalyst, a phase transfer catalyst, and 30% hydrogen peroxide [19]. This produced a 90% yield of adipic acid after 8 h at 90 ◦C in air. However, this reaction required 4.0 to 4.4 molar equivalents of H2O2 to cyclohexene. This ratio renders the process uneconomical on an industrial scale because of the expense of using hydrogen peroxide in these relative amounts. The presence of a toxic phase transfer catalyst is also a major drawback of this approach. Gold nanoparticles have been shown to be active in a number of reactions, despite being originally considered chemically inactive. Since the pioneering work on gold nanoparticles by Haruta and Hutchings [20,21], gold has been shown to be active in several reactions, namely, low-temperature CO oxidation [22,23], C–C bond coupling [24,25], selective hydrogenation [26–28], and oxidations [29,30]. Ovoshchnikov et al. assessed the reactivity of Au-based catalysts for cyclohexene oxidations using solvent-free and initiator-free conditions [31]. It was found that the selectivity of the oxidations could be altered from allylic products to the epoxide via the choice of co-catalyst. A WO3 co-catalyst was found to shift the selectivity towards cyclohexene oxide, while MIL-101 catalysed conversion of cyclohexenyl hydroperoxide to the allylic products. Using a WO3 and Au/SiO2 system, they could achieve 50% conversion and 26% selectivity towards the epoxide as the main product at 65 ◦C and 1 atm O2. WO3 achieves this by promoting the reaction between cyclohexenyl hydroperoxide and cyclohexene to create cyclohexene oxide and 2-cyclohexen-1-ol, as shown in Scheme1. As a result of these findings, herein we present an investigation into the selective oxidation of cyclohexene under solventless and radical initiator free conditions to target cyclohexanediol with Au-based catalysts. Catalysts 2018, 8, 311 3 of 10 Catalysts 2018, 8, x FOR PEER REVIEW 3 of 10 Scheme 1. Proposed mechanism by Ovoshchnikov et al. for cyclohexene oxidation [31]. [31]. 2. Results The aim of this work was to modify conditions used by Ovoshchnikov et al. in order to achieve further oxidation of the epoxide to yieldyield cyclohexanecyclohexane diol. For For all all catalysts, the the Au content was maintained at at 1 1 wt wt % % with with either either a agraphite graphite or or graphene graphene support. support. The The catalysts catalysts were were prepared prepared via viaan impregnationan impregnation method method or ora sol a sol immobilisation immobilisation me methodthod and and then then analysed analysed by by TEM (transmission electron microscopy) and STEM (scanning transmissi transmissionon electron microscopy) techniques to quantify nanoparticle size and establish a relationship between nanoparticle size and selectivity to the desired ◦ products. Unless Unless otherwise otherwise stated, stated, all all reactions reactions were were run run at at 3 bar O 2 atat 60 60 °CC for for 24 24 h, h, with 0.1 g of catalyst (5.08 × 1010−6− Au6 Au mol mol %). %). The The results results are are presented presented in in Table Table 1.1 . a Table 1. Performance of catalysts in cyclohexene oxidation a. SelectivitySelectivity (%) (%) CatalystCatalyst ConversionConversion (%) (%) Cy–OxideCy–Oxide Cy–OlCy–Ol Cy–OneCy–One Cy–DiolCy–Diol Blank - 1.7 3.2 41.6 47.5 2.3 Blank - 1.7 3.2 41.6 47.5 2.3 GraphiteGraphite -- 0.60.6 3.63.6 20.120.1 29.229.2 2.72.7 GrapheneGraphene -- 4.34.3 13.413.4 26.926.9 48.748.7 0.10.1 WOWO3 -- 10.310.3 37.037.0 39.539.5 12.412.4 5.25.2 II 8.58.5 13.713.7 17.317.3 38.438.4 1.41.4 1%1% Au/graphite Au/graphite SS 61.461.4 3.93.9 15.615.6 55.355.3 4.54.5 b II 17.717.7 29.829.8 31.131.1 22.222.2 5.15.1 1%1% Au/graphite Au/graphite ++ WOWO33 b SS 75.275.2 0.40.4 16.416.4 37.037.0 13.713.7 II 25.925.9 10.110.1 18.218.2 53.353.3 3.13.1 1%1% Au/graphene Au/graphene SS 73.273.2 0.00.0 18.618.6 56.056.0 7.87.8 b II 41.641.6 7.17.1 21.321.3 46.446.4 5.25.2 1%1% Au/graphene Au/graphene ++ WOWO33 b SS 76.176.1 0.00.0 17.017.0 48.848.8 9.09.0 a a Reactionconditions: conditions: cyclohexene cyclohexene (10 (10 mL), mL), n-decane n-decane (1 mL) (1 as mL) an internalas an internal standard, st catalystandard, (0.1 catalyst g), O2 (0.1(3 atm), g), 60 ◦C, 24 h, glass reactor.
Recommended publications
  • Cyclohexane Oxidation Continues to Be a Challenge Ulf Schuchardt A,∗, Dilson Cardoso B, Ricardo Sercheli C, Ricardo Pereira A, Rosenira S
    Applied Catalysis A: General 211 (2001) 1–17 Review Cyclohexane oxidation continues to be a challenge Ulf Schuchardt a,∗, Dilson Cardoso b, Ricardo Sercheli c, Ricardo Pereira a, Rosenira S. da Cruz d, Mário C. Guerreiro e, Dalmo Mandelli f , Estevam V. Spinacé g, Emerson L. Pires a a Instituto de Qu´ımica, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil b Depto de Eng. Qu´ımica, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil c College of Chemistry, University of California, Berkeley, CA 94720, USA d Depto Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, 45650-000 Ilhéus, BA, Brazil e Universidade Federal de Lavras, Lavras, MG, Brazil f Instituto de Ciências Biológicas e Qu´ımicas, PUC-Campinas, 13020-904 Campinas, SP, Brazil g Sup. Caracterização Qu´ımica, IPEN, 05508-900 São Paulo, SP, Brazil Received 3 October 2000; received in revised form 21 December 2000; accepted 28 December 2000 Abstract Many efforts have been made to develop new catalysts to oxidize cyclohexane under mild conditions. Herein, we review the most interesting systems for this process with different oxidants such as hydrogen peroxide, tert-butyl hydroperoxide and molecular oxygen. Using H2O2, Na-GeX has been shown to be a most stable and active catalyst. Mesoporous TS-1 and Ti-MCM-41 are also stable, but the use of other metals such as Cr, V, Fe and Mo leads to leaching of the metal. Homogeneous systems based on binuclear manganese(IV) complexes have also been shown to be interesting. When t-BuOOH is used, the active systems are those phthalocyanines based on Ru, Co and Cu and polyoxometalates of dinuclear ruthenium and palladium.
    [Show full text]
  • POLYMERISATION of SOME CYCLIC ETHERS and ALLYL COMPOUNDS at Higf PRESSURES
    POLYMERISATION OF SOME CYCLIC ETHERS AND ALLYL COMPOUNDS AT HIGf PRESSURES. THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE UNIVERSITY OF LONDON BY MUSTAFIZUR RAHMAN. DEPARTMENT OF CHEMICAL ENGINEERING AND CHEMICAL TECHNOLOGY, IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON, S.W.7. SEPTEMBER, 1967. ABSTRACT. The polymerizations of seven cyclic ethers and two allyl compounds have been studied at high pressures (up to 12,000 atm.). BF3.(C2H5)20 was usually used as catalyst to polymerize the ethers, except for 1,4-epoxycyclohexane with wilich the co-catalyst epichlorohydrin was employed. Benzoyl peroxide and azo-isobutyronitrile were used to polymerize the allyl compounds. The polymerizations of 1,4-epoxycyclohexane and tetrahydrofuran (THF) have been studied most extensively. From the lag rate vs. pressure graphs, "overall volumes of activation" Air*pol were calculated and compared with those for vinyl compounds. Conductances of solutions of BP3.(C2H5)20 in tetrahydropyran were measured and the results discussed in relation to the kinetic measurements. The variation of the polymerization ceiling temperature of THF with pressure was determined between 1 and 2500 atm. The polymerizations of cyclohexene oxide, styrene cxide, cyclooctene oxide, tetrahydropyran, triallyl phosphate, triallyl phosphite and the co-polymerization of triallyl phosphate and styrene, have been studied briefly. The results, wherever possible, have been explained in terms of existing ideas. 3. Polymers from viscous liquid to insoluble solids were obtained during this investigation and the molecular weights were determined, where possible. 4 ACKNOWLEDGEBENTS. The author wishes to express his gratitude to Dr. K.E.Weale for his kind supervision, valuane guidance and constant encouragement during the course of this study.
    [Show full text]
  • Chem 314 Preorganic Evaluation
    Organic Reaction Guide Beauchamp 1 Chem 316 / Beauchamp Reactions Review Sheet Name SN2 Reactions - special features: biomolecular kinetics Rate = kSN2[RX][Nu ], single step concerted reaction, E2 is a competing reaction o o o o relative order of reactivity: CH3X > 1 RX > 2 RX >> 3 RX (based on steric hinderance, no SN2 at 3 RX) allylic & benzylic RX are very reactive, adjacent pi bonds help stabilize transition state and lower TS energy (Ea) o complete substitution at Cα (3 RX) or Cβ (neopentyl pattern) almost completely inhibits SN2 reactions vinyl & phenyl are very unreactive, bonds are stronger and poor backside approach leaving group ability: OTs = I > Br > Cl in neutral or basic conditions (just like E2, SN1 adn E1), and neutral molecule leaving groups are good from protonated, cationic intermediates in acid conditions, + + + + -OH2 , -ORH , -OR2 , -NR3 , etc. we will consider all anions, ammonia, amines, thiols and sulfides to be strong nucleophiles (favors SN2 and E2 reactions) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and - + + - + - some are mainly bases (t-BuO K , Na H2N , Na H ) polar, aprotic solvents work best for SN2 reactions because nucleophiles are relatively unencombered for electron doantion (dimethyl sulofoxide = DMSO, dimethylformamide = DMF, acetonitrile = AN, acetone, etc.) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and we will consider neutral solvent molecules such as water, alcohols and acids to be weak nucleophiles (favors SN1 and E1) stereoselectivity: 100% inversion of configuration from backside atack regioselectivity: reacts at carbon with leaving group, completely unambiguous chemoselectivity: N/A The following list is designed to emphasize SN2 reactions.
    [Show full text]
  • Cyclohexene Oxide/Carbon Dioxide Copolymerization by Chromium(III) Amino-Bis(Phenolato) Complexes and MALDI- TOF MS Analysis of the Polycarbonates
    Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Information for Cyclohexene Oxide/Carbon Dioxide Copolymerization by Chromium(III) Amino-bis(phenolato) Complexes and MALDI- TOF MS Analysis of the Polycarbonates Katalin Devaine-Pressing,† Louise N. Dawe,†,‡ and Christopher M. Kozak*,† † Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada. ‡ C-CART X-ray Diffraction Laboratory, Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada. Current address: Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W. Waterloo, Ontario, N2L 3C5, Canada Experimental S3 Table S1. Crystallographic and structure refinement data for 1·THF, 1·DMAP and 2·THF S10 Figure S1. MALDI-TOF mass spectrum of 1·THF S11 Figure S2. MALDI-TOF mass spectrum of 1·THF higher mass region. S11 Figure S3. MALDI-TOF mass spectrum of 2·THF S12 Figure S4. MALDI-TOF mass spectrum of 1·DMAP S13 Figure S5. UV-Vis absorption spectrum of 1·THF S14 Figure S6. UV-Vis absorption spectrum of 2·THF S14 Figure S7. UV-Vis absorption spectrum of 1·DMAP S15 Figure S8. IR spectrum of 1·THF S16 Figure S9. IR spectrum of 2·THF S16 Figure S10. IR spectrum of 1·DMAP S17 Figure S11. The first 20 min of the reaction profile of the growth of the polycarbonate ν(C=O) BuBuPy catalyzed by 1·THF, 1·DMAP and CrCl[O2NN’] S17 Figure S12. The second stage of the propagation of the reaction catalyzed by BuBuPy CrCl[O2NN’] .
    [Show full text]
  • Oxidation of Cyclohexene with H2O2 Catalyzed by Vanadium Based Polyoxometalates Doped Modified Clays As Green Catalysts S
    Vol. 132 (2017) ACTA PHYSICA POLONICA A No. 3 Special issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016) Oxidation of Cyclohexene with H2O2 Catalyzed by Vanadium Based Polyoxometalates Doped Modified Clays as Green Catalysts S. Boudjemaa;b;∗, H. Rabaha and A. Choukchou-Brahama aLaboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Sciences, University of Tlemcen, Algeria bKasdi Merbah University, Faculty of Hydrocarbons, Renewable Energy, Earth Sciences and Universe, Ouargla, Algeria The catalytic performance of supported heteropolyacids in various liquid–solid and gas–solid heterogeneous re- actions may be affected by the choice of support and/or the method of heteropolyacid deposition. Vanadium substi- tuted polyphosphomolybdate with the Keggin structure H4[PVMo11O40]·13H2O (PVMo) was dispersed throughout acid activated bentonite (clay from Hammam Boughrara, Maghnia, Algeria). A series of catalysts were prepared via modified impregnation. Modified preparation method employed ultrasonication as a means of the dispersion homogenization, followed by freeze-drying. The catalysts were characterized by the Brunauer–Emmett–Teller, the Fourier transform infrared, and 31P solid-state magic angle spinning-NMR spectroscopy. The catalytic performance of PVMo/Hmont was evaluated in the oxidation of cyclohexene. Intact Keggin anions were preserved on Hmont after deposition aided by ultrasonication. The obtained results showed that a better catalytic activity can be ob- tained with PVMo/bentonite (98% of conversion and 89% of cyclohexene oxide), by drop addition of H2O2, for 3 h. DOI: 10.12693/APhysPolA.132.469 PACS/topics: heteropolyacids, bentonite, acid catalyst, cyclohexene oxidation, hydrogen peroxide 1. Introduction lished on the immobilization of heteropolyacids on vari- ous supports including silica, alumina, titania, and zeo- Cyclohexene oxidation has been the subject of exten- lites [6–10].
    [Show full text]
  • Cyclohexene Oxide 286-20-4 NTP NOMINATION HISTORY and REVIEW
    Cyclohexene oxide 286-20-4 NTP NOMINATION HISTORY AND REVIEW A. Nomination History 1. Source: National cancer Institute 2. Recommendations: -Mechanistic carcinogencity studies -Synergism studies or two-stage studies - Test with benzene or other chemicals deemed appropriate by NTP 3. Rationale/Remarks: -High annual production volume -Potential for human exposure based on its use as a research and industrial chemical -Environmental contaminant -Representative cycloalkene monoepoxide; suspicion of carcinogenicity as a member of the epoxides· chemical class 4. Priority: High 5. Date of Nomination: 4/93 B. Interagency Committee for Chemical Evaluation and Coordination Review \ 1. Date of Review: 2. Recommendations: 3. Priority: 4. NTP Chemical Selection Principles: 5. Rationale/Remarks: "' 286-20-4 Cyclohexene oxide SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry Name: 286-20-4 Chemical Abstracts Name: 7-oxabicyclo[ 4.1.0]heptane(9CI,8CI) Synonyms and Trade Names: Cyclohexene oxide; cyclohexene epoxide; 1,2­ epoxycyclohexane; cyclohexane oxide tetramethyleneoxirane; CO; CHO Structure. Molecular Formula and Molecular Weight Mol. wt.: 98.15 Chemical and Physical Properties Description: Colorless liquid with strong (pungent, offensive) odor (Sax & Lewis, 1987;Uniroyal, 1990) Boiling Point 129-131°C; 266°F (Sax & Lewis, 1987; Uniroyal, 1990; Weast, 1989) Melting Point <-10°C (Weast, 1989) Solubilitv: Very soluble in benzene; soluble in alcohol, ether, acetone, chloroform; low water solubility (-0.5 g/L) (Sax & Lewis, 1987; BASF, 1990; Weast, 1989) DensitY: 0.967 g/cc@ 25°/4°C (Sax & Lewis, 1987; Uniroyal, 1990) Prepared for NCI by Technical Resources, Inc. under Contract No. N01-CP-56019 (9/91; rev. 2/93) 6'( II 286-20-4 Cyclohexene oxide Vapor Pressure: 12 mbar (BASF, 1990) Flash Point 27oC; 81 oF (Sax & Lewis, 1989; Uniroyal, 1990.) Stabiiitv: Stable at ambient temperatures and pressures.
    [Show full text]
  • Chemical Inventory
    Name CAS Number SOP Status Supplier Size Qt. Location Received Purchaser Hazards (1,3-bis)2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene[2-(i-propoxy)-5-(N,N-dimethyl aminosulfonyl)phenyl]methylene Ru(II) dichloride918870-76-5 100mg 1 Storage # 3 (2-bromoethyl) benzene 98% 103-63-9 100G 2 Storage # 3 (3-aminopropyl)triethoxysilane 919-30-2 Sigma 100 mL 1 Storage #3 Apr-13 Stephanie Flammable, toxic, corrosive (3-aminopropyl)trimethoxysilane 13822-56-5 Sigma 100 mL 1 small fridge May-13 Stephanie Corrosive, irritant (3-iodopropyl)trimethoxysilane 14867-28-8 1 Storage # 2 (3-mercaptopropyl) trimethoxysilane 95% 4420-74-0 25g 1 Shelf # 3 (3-mercaptopropyl)-trimethoxysilane 95% 4420-74-0 25G 2 Storage # 2 (iodomethyl)trimethylsilane 4206-67-1 5mL 1 Storage # 2 (Propan-2-yloxy) benzene 2741-16-4 Enamine 1g 1 Storage # 3 Nov-14 Zach (Trimethylsilyl)methyllithium, 1.0M solution in pentane 1822-00-0 SOP on file-Lithium reagents Aldrich 50ml 1 Large fridge Highly flammable 0.5% Rhodium on 1/8 Alumina pellets 7440-16-6 25g 2 Shelf # 1 1% Pt-Al-1DR 7440-06-4 74292-90-5 0.05kg 1 Shelf # 1 1-(2-hydroxyethyl)-2-pyrolidinone 98% 3445-11-2 5ml 2 Storage # 3 1-(Trimethylsiloxy)cyclohexene 6651-36-1 Alfa 1g 1 Small fridge Mar-14 Bethany 1,1,1,3,3,3-Hexafluoro-2-propanol, 99+% 920-66-1 25g 1 Storage # 4 1,1,1,3,3,3-Hexafluoro-2-propanol-d9, 99 atom%D 38701-74-5 1g 2 Storage #7 1,1,1,3,3,3-hexamethyl-disilane 99.9% 1450-14-2 100mL 2 Storage # 2 1,1,2,2-Tetra chloroethane-D2 (D, 99.6%) 33685-54-0 SOP on file- Acutely toxic chem.
    [Show full text]
  • In Presenting the Dissertation As a Partial Fulfillment of The
    In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this dis­ sertation which involves potential financial gain will not be allowed without written permission. 7/2^/68 THE REACTION OF ATOMIC OXYGEN WITH ORGANIC COMPOUNDS A THESIS Presented to The Faculty of the Graduate Division by Arthur Joseph Mosher In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology March 1970 THE REACTION OF ATOMIC OXYGEN WITH ORGANIC COMPOUNDS Approved: Uhaiaraan •9 Date Approved by Chairman ACKNOWLEDGMENTS I would like to thank Dr. Erling Grovenstein, Jr. for acting as my research advisor; without his penetrating analysis this thesis would not have been possible. I would also thank Drs. Thomas F. Moran and Charles J_. Liotta for serving on the reading committee. Discussions with the latter were quite beneficial to this thesis. Special recognition is due to John McKelvey, whose exciting mind and cheerful disposition are a source of inspiration to all.
    [Show full text]
  • Catalogue of China Dangerous Chemical, Ver. 2002
    Catalogue of China Dangerous Chemical, Ver. 2002 China DG No. Category Sub-Category Chinese Name Chinese Alias English Name English Alias CAS No. UN No. No Barium azide,dry or 迭氮(化)钡[干的或含水 1 Explosive 1.1 11018 wetted with less than 18810-58-7 224 <50%] 50% water,by mass Lead azide, wetted with not less than 20% 迭氮(化)铅[含水或水加 2 Explosive 1.1 11019 water, or mixture of 13424-46-9 129 乙醇≥20%] alcohol andwater,by mass 3 Explosive 1.1 11020 重氮甲烷 Diazomethane 334-88-3 Diazodinitrophenol,wette d with not less than 40% 二硝基重氮酚[含水或水 4 Explosive 1.1 11021 重氮二硝基苯酚 water,or mixture of Dinitrodiazophenol 87-31-0 74 加乙醇≥40%] alcohol and water,by mass Lead trinitroresorcinate,wetted 三硝基间苯二酚铅[含水 with not less than 20% 5 Explosive 1.1 11022 收敛酸铅 Lead styphnate 63918-97-8 130 或水加乙醇≥20%] water,or mixture of alcohol and water,by mass Guanyl nitrosaminoguanylidene 脒基亚硝氨基脒基叉肼 6 Explosive 1.1 11023 hydrazine, wetted with 113 [含水≥30%] not less than30% water,by mass Guanyl nitrosaminoguanyltetraz 脒基亚硝氨基脒基四氮烯 ene, wetted with not less 7 Explosive 1.1 11024 [含水或水加乙醇≥ 四氮烯; 特屈拉辛 Tetrazene 109-27-3 114 than 30% water,or 30%] mixture of alcohol and water,by mass www.randis.cn 1/215 Catalogue of China Dangerous Chemical, Ver. 2002 China DG No. Category Sub-Category Chinese Name Chinese Alias English Name English Alias CAS No. UN No. No Mercury fulminate,wetted with not less than 20% 雷(酸)汞[含水或水加乙 8 Explosive 1.1 11025 water,or mixture of 628-86-4 135 醇≥20%] alcohol and water,by mass Perchloric 9 Explosive 1.1 11026 高氯酸[浓度>72%] 7601-90-3 acid(containing>72%) Nitroguanidine,dry
    [Show full text]
  • Aerobic Catalytic Oxidation of Cyclohexene Over Tizrco Catalysts
    catalysts Article Aerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts Tong Liu 1,2,3, Haiyang Cheng 1,2,*, Weiwei Lin 1,2, Chao Zhang 1,2, Yancun Yu 1,2 and Fengyu Zhao 1,2,* 1 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; [email protected] (T.L.); [email protected] (W.L.); [email protected] (C.Z.); [email protected] (Y.Y.) 2 Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 3 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (H.C.); [email protected] (F.Z.); Tel.: +86-431-8526-2454 (H.C.); Tel./Fax: +86-431-8526-2410 (F.Z.) Academic Editor: Michalis Konsolakis Received: 8 December 2015; Accepted: 12 January 2016; Published: 29 January 2016 Abstract: The aerobic oxidation of hydrocarbon is of great significance from the viewpoints of both fundamental and industry studies as it can transfer the petrochemical feedstock into valuable chemicals. In this work, we investigated the aerobic oxidation of cyclohexene over TiZrCo catalysts, in which 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion of 92.2%, which are comparable to the best results reported for the aerobic oxidation of cyclohexene over heterogeneous catalysts. The influences of kinds of solvent, substrate concentration and reaction temperature were evaluated. Moreover, the catalytic performance of the TiZrCo catalyst and the main catalytic active species were also discussed.
    [Show full text]
  • Structure-Reactivity Relations for Thiol-Disulfide Interchange Janette Houk and George M
    J. Am. Chem. SOC.1987, 109, 6825-6836 6825 ‘H NMR (22 OC, benzene-d6): 6 3.26 (s, OSCMe), 3.03 (s, 2JwH= A systematic search of a limited hemisphere of reciprocal space lo- 8.54 Hz, CH2CMe3next to S), 2.85 (s, ’JWH= 9.98 Hz, CH2CMe3next cated a set of diffraction maxima with systematic absences corresponding to Oh 2.32 (s. O,CMe), 2.26 (s,.- 0,CMe trans to OSCMe) 1.49, 1.46 (s, to the unique monoclinic space group P2,/a. Subsequent solution and CH2CMe3): refinement confirmed this choice. IR: 324 (m), 333 (m), 375 (w), 450 (w), 620 (w), 627 (w), 668 (ms), The structure was solved by a combination of direct methods 680 (m). 907 (mw), 932 (w). 1018 (w), 1040 (w), 1088 (vs), 1175 (ms), (MULTAN~S)and Fourier techniques and refined by full-matrix least 1202(mw), 1236 (ms), 1349 (m), 1361 (ms), 1374 (ms), 1438 (vs), 1460 squares. Many of the hydrogen atom positions were visible in a difference (s), 1492 (m) cm-I. Fourier phased on the non-hydrogen parameters. The positions of all W2(np)2(02CNMe2)4.In a Schlenk flask W2(np)2(NMe2)4(0.30 g, hydrogens were calculated and placed in fixed idealized positions (d(C- 0.44 mmol) was dissolved in CH2C12and then frozen in liquid N,. A H) = 0.95 A) for the final cycles. The hydrogen atoms were assigned large excess (>4 equiv) of C02was condensed into the flask. The so- a thermal parameter of 1 + Bise of the carbon atom to which they were lution was then slowly warmed to room temperature while the flask was bound.
    [Show full text]
  • Industrial Chemicals, Ashfords Dictionary, Formula Index
    Formula index Ag1 Ag1 Al1C6H16Na1O4 silver sodium bis(2-methoxyethoxy)aluminium hydride Ag1Br1 Al1C6H18O9P3 silver bromide fosetyl-aluminium Ag1C1N1 Al1C8H19 silver cyanide diisobutylaluminium hydride Ag1Cl1 Al1C9H21O3 silver chloride aluminium isopropoxide Ag1N1O3 Al1C12H27 silver nitrate triisobutylaluminium Ag1O1 tri-n-butylaluminium silver peroxide Al1C18H37O4 Al1 aluminium monostearate aluminium Al1C24H45O6 Al1C2Cl2H5 aluminium octoate ethylaluminium dichloride Al1C24H51 Al1C2H3O5 tri-n-octylaluminium aluminium formate, basic Al1C27H18N3O3 Al1C4Cl1H10 tris(8-hydroxyquinoline)aluminium diethylaluminium chloride Al1C36H71O5 Al1C4H7N4O5 aluminium distearate aldioxa Al1C54H105O6 Al1C4H7O5 aluminium tristearate aluminium acetate, basic Al1Cl3 Al1C6H9O6 aluminium chloride, anhydrous aluminium acetate Al1Cl3H12O6 Al1C6H15 aluminium chloride, hexahydrate triethylaluminium Al1F3 Formula Index: Ashford’s Dictionary of Industrial Chemicals Al1F6Na3 aluminium fluoride cobalt blue Al1F6Na3 Al2H2O4 cryolite alumina trihydrate Al1H4Li1 Al2O3 lithium aluminium hydride alumina, activated Al1H4N1O8S2 alumina, calcined ammonium alum alumina, fused Al1H6O12P3 aluminium hydroxide gel aluminium phosphate, monobasic Al2O5Si1 Al1K1O8S2 aluminium silicate, precipitated aluminium potassium sulfate Al2O5Ti1 Al1N1 aluminium titanate aluminium nitride Al2O12S3 Al1N3O9 aluminium sulfate aluminium nitrate Al3H14Na1O32P8 Al1Na1O2 sodium aluminium phosphate, acidic sodium aluminate Al16C12H54O75S8 Al1Na1O8S2 sucralfate sodium alum Ar1 Al1P1 argon aluminium phosphide
    [Show full text]