A Dipper Full of Wonder

Total Page:16

File Type:pdf, Size:1020Kb

A Dipper Full of Wonder Cambridge University Press 978-0-521-72170-7 - Stephen James O’Meara’s Observing the Night Sky with Binoculars: A Simple Guide to the Heavens Stephen James O’Meara Excerpt More information CHAPTER 1 A Dipper full of wonder here is no better way to start our journey than by in horror as Juno, red with rage, transformed her into a T admiring the Big Dipper (also known as the Plough giant bear. First Callisto’s arms turned hairy, then her legs. or Wagon), the most famous star pattern in the world. Her sensitive jaw became crooked. Her gentle lips peeled Spending your first nights with this easily seen star pat- back to reveal sharp teeth. When the deed was done, Cal- tern is also an excellent way to learn the basics of obser- listo fled into the woods on all fours. She became terrified vational astronomy. Doing so will teach you how to use of her new situation, because, although Callisto looked your binoculars to full advantage; besides, if you’re just like a beast, she had retained her human thoughts and beginning in this hobby, you’ll need to know the basics, heart. which are the building blocks of a strong foundation. I’ve One day, many years later, a young hunter encountered always been a proponent of learning by doing. So let’s a foraging bear and startled it. Out of surprise, the mighty get started. But before we do, understand that there’s no bear stood on its hind legs, opened wide its paws, and let need to rush. The stars, just like our friends, will always out a terrifying roar. The hunter jumped back. The bear be there for you, night after night, month after month, charged. But just as the hunter raised his spear to lance year after year. It’s the beauty of longevity. the beast, Jupiter appeared on the scene in time to stop Let’s start our journey with some understanding. First, the killing. Yes, the bear was Callisto, who, forgetting the Big Dipper is not a constellation. It is an asterism in the her appearance, was racing toward her long-lost son to constellation Ursa Major, the Great Bear. An asterism is a embrace him! familiar pattern of stars that forms part of one or more of Toprevent any future tragedy,Jupiter turned Arcas into a the 88 officially recognized constellations (see Appendix A). bear, so he could forever enjoy the company of his mother. The bowl of the Big Dipper lies in the body of the Bear, The great god then grabbed the two bears by their tails while the Dipper’s handle is the Bear’s tail – at least that’s and swirled them high over his head. As he swirled the how the early Greek and Roman stargazers saw it; other massive beasts, their tails stretched to great length before cultures, such as the Cherokee Indians of the southern Jupiter finally flung them into the heavens. Today we see Appalachian Mountains, saw the three handle stars as three Callisto and Arcas, as Ursa Major and Ursa Minor, the hunters in pursuit of a bear. Great and Little Bear, respectively. But the story is not over. When Juno discovered what Jupiter had done, she was outraged. How could her hus- How the Bear got its tail band place that adulteress and her spawn in the night sky Anyone who has seen a bear knows that its tail is nothing but a short stub. So why is Ursa Major’s tail so long? The answer, though a bit of a stretch, comes from the mytho- logical tale of Callisto – one of several chaste maidens who cared for Diana (Artemis),1 the virgin goddess of the Moon. As fate would have it, Callisto caught the ever- roaming eye of Jupiter (Zeus), the thunderbolt-wielding King of the Gods. After a roll in the hay, the maiden bore Jupiter a son, who she named Arcas (Arctos). Jupiter never could keep a secret from Juno (Hera), his wife and twin sister, who became enraged with jealousy. When Juno sought out and found Callisto, she grabbed the nymph by her long golden locks and threw her to the ground, screaming, “Curse your beauty! I’ll make sure that no one will desire you ever again!” With those words, Juno raised her arms. Lightning flashed, and thun- der pealed. Powerless to defend herself, Callisto watched 1 The names in parentheses are the Greek counterparts of the Roman or Latin names. © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-72170-7 - Stephen James O’Meara’s Observing the Night Sky with Binoculars: A Simple Guide to the Heavens Stephen James O’Meara Excerpt More information 2 Observing the Night Sky with Binoculars so near the heavenly pole? Seeking comfort, she went to If you lived on the equator (latitude 0◦), the North Star her foster parents who ruled the seas and complained: would sit on the north horizon (altitude 0◦). Likewise, if, “Why should anyone fear offending Jupiter when he you live in New York City (40◦ latitude), the North Star rewards them for causing me displeasure?” She beseeched is 40◦ above the north horizon (40◦ altitude). How high her relatives to grant her one request: that the bears never is 40◦? Draw an imaginary line from the north horizon set foot in her parents’ sacred waters, as do the other stars to the point overhead (the sky’s zenith). That line spans an on their nightly courses; instead, she wanted the bears angular distance of 90◦. Forty degrees is almost one-half to circle the pole, night after night, without time to rest. of the way from the horizon to the zenith. Now hold an And so it is today that observers from mid-northern lati- upright fist at arm’s length and look at it with one eye tudes never see Ursa Major or Ursa Minor set below the closed. The amount of sky covered by the fist is about horizon; they are circumpolar constellations – ones that cir- 10◦. cle the north celestial pole without ever setting, which is why finding the Big Dipper is always a good way to start your skywatching experience. Given a low horizon, you can see it at any time of the year or night. How to find the Big Dipper Big Dipper To find the Big Dipper, you’ll need to get your bearings. Go outside when twilight ends and allow at least 15 min- utes for your eyes to adapt to the growing darkness. As Little Dipper you wait, determine which way is north; use a compass or the compass setting on your Global Positioning Ser- North Star EastWest vice (GPS), if necessary. When you face north, your left arm will point west, your right arm will point east, and 40˚ south will lie directly behind you. Find a tree, house, or other landmark at these cardinal points, and record them 30˚ in your observing log. When outside observing, be sure to use a red flashlight to record your notes; the eye’s rod 20˚ cells, which are responsible for our keen night vision, are insensitive to red light. 10˚ The landmarks you select will serve as guides to cer- tain stars or constellations mentioned later in this book. For instance, if I were to tell you to look for a bright star June 20th Looking North 9:00 p.m. halfway up the northeastern sky, you will know how to position your body (say, halfway between an oak tree in the north and a neighbor’s house in the east) before look- For an observer living in New York City to find the ing up. That said, your first challenge is to find Polaris, North Star, he or she would face north, place the base the North Star, which will serve as your faithful guiding of their upright fist on the horizon line, make a fist light. Be warned, despite popular myth, the North Star is with his or her other hand, and place it on top of the not the brightest star in the night sky; it ranks 48th. But it first fist (like one potato, two potato). Four fists equals is solitary and obvious; it also shines with a yellow light, about 40◦. The North Star should be sitting on the top so it’s not difficult to detect. fist. The height of the North Star above your horizon (its Now let’s look for the Big Dipper. Since the Dipper is altitude) is the same as your latitude on Earth. (Latitude circumpolar, you can go out at any time of the night, ◦ ◦ is measured from 0 at the equator to 90 at the pole.) at any time of the year to find it. If you go outside ◦ If you lived on the North Pole (latitude 90 ), the North and observe the Big Dipper and the North Star at, say, Star would be at the zenith (the point in the sky directly 9:00 pm on April 1, then observe them again on the same ◦ overhead; altitude 90 ). The reason for this coincidence night three hours later, you will see that the Dipper has ◦ is that the North Star happens to be within 1 of the rotated counterclockwise around the north celestial pole point where Earth’s imaginary axis of rotation intersects 2 the dome of the sky. wobble takes 26,000 years to complete, Earth’s imaginary axis slowly precesses over the years, transcribing an invisible circular path in the northern sky.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Characterisation of Young Nearby Stars – the Ursa Major Group
    FRIEDRICH-SCHILLER-UNIVERSITAT¨ JENA Physikalisch-Astronomische Fakult¨at Characterisation of young nearby stars – The Ursa Major group Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalischen-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von Dipl.-Phys. Matthias Ammler geboren am 10.01.1977 in Neuburg a. d. Donau Gutachter 1. Prof. Dr. Ralph Neuh¨auser 2. Dr. habil. Matthias H¨unsch 3. Prof. Dr. Artie P. Hatzes Tag der letzten Rigorosumspr¨ufung: 26. Juni 2006 Tag der ¨offentlichen Verteidigung: 11. Juli 2006 Meinen Eltern Contents List of Figures vii List of Tables ix Abstract xi Zusammenfassung xiii Remarks and Acknowledgements xv 1 Introduction 1 1.1 WhatistheUrsaMajorgroup? . 1 1.1.1 Co-movingstarsin the BigDipper constellation . .... 1 1.1.2 Stellarmotionandmovinggroups . 1 1.1.3 Formation and evolution of open clusters and associations ... 6 1.1.4 The nature of the UMa group – cluster or association, or some- thingelse? ............................ 8 1.2 WhyistheUMagroupinteresting?. 8 1.2.1 Asnapshotinstellarevolution . 8 1.2.2 Alaboratoryinfrontofthedoor . 9 1.2.3 Thecensusofthesolarneighbourhood . 10 1.3 ConstrainingtheUMagroup–previousapproaches . ..... 11 1.3.1 Spatialclustering . 11 1.3.2 Kinematic criteria – derived from a “canonical” memberlist . 12 1.3.3 Kinematic parameters – derived from kinematic clustering ... 15 1.3.4 Stellarparametersandabundances . 17 1.3.5 TheageoftheUMagroup–photometriccriteria . 19 1.3.6 Spectroscopicindicatorsforageandactivity . .... 19 1.3.7 Combining kinematic, spectroscopic, and photometric criteria . 21 1.4 Anewhomogeneousspectroscopicstudy . 21 1.4.1 Definingthesample ....................... 22 1.4.2 Howtoobtainprecisestellarparameters? . .. 23 2 Observations,reductionandcalibration 25 2.1 Requireddata ............................... 25 2.2 Instruments ...............................
    [Show full text]
  • Lecture 2 Our Place in the Universe (Cont'd)
    Astronomy 110 –1 Lecture 2 Our Place in the Universe (Cont’d) 14/01/09 1 Copyright © 2009 Pearson Education, Inc. A few useful mathematical skills 14/01/09 2 Copyright © 2009 Pearson Education, Inc. Powers of ten 103 = 10 x 10 x 10 = 1000 102 = 10 x 10 = 100 101 = 10 100 = 1 10-1 = 1/10 = 0.1 10-2 = 1/10 x 1/10 = 0.01 10-3 = 1/10 x 1/10 x 1/10 = 0.001 Then: 300 = 3 x 100 = 3 x 102 2,500 = 2.5 x 1000 = 2.5 x 103 14/01/09 3 Copyright © 2009 Pearson Education, Inc. Multiplying & dividing 101 x 101 = 100 = 102 101 x 102 = 10 x 100 = 1000 = 103 102 x 102 = 100 x 100 = 10000 = 104 When multiplying two powers of ten, add the exponents 1000 ÷ 100 = 103 ÷ 102 = 10 = 101 10 ÷ 10 = 101 ÷ 101 = 1 = 100 10 ÷ 100 = 101 ÷ 102 = 1/10 = 10-1 When dividing, subtract exponent of divisor from exponent of numerator 14/01/09 4 Copyright © 2009 Pearson Education, Inc. Powers and roots (104)3 = 104 x 104 x 104 = 1012 Rule of thumb: when raising to a power, multiply exponents What about √(104)? √(104) = 102 taking roots is the same as raising to a fractional power, in this case 1/2 power: √(104) = (104)1/2 = 102 √ is the same as raising to 1/2 power 3√ is the same as raising to 1/3 power 4√ is the same as raising to 1/4 power 14/01/09 5 Copyright © 2009 Pearson Education, Inc.
    [Show full text]
  • The Observer's Handbook for 1912
    T he O bservers H andbook FOR 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA E d i t e d b y C. A, CHANT FOURTH YEAR OF PUBLICATION TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e So c ie t y 1912 T he Observers Handbook for 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e S o c ie t y 1912 PREFACE Some changes have been made in the Handbook this year which, it is believed, will commend themselves to observers. In previous issues the times of sunrise and sunset have been given for a small number of selected places in the standard time of each place. On account of the arbitrary correction which must be made to the mean time of any place in order to get its standard time, the tables given for a particualar place are of little use any­ where else, In order to remedy this the times of sunrise and sunset have been calculated for places on five different latitudes covering the populous part of Canada, (pages 10 to 21), while the way to use these tables at a large number of towns and cities is explained on pages 8 and 9. The other chief change is in the addition of fuller star maps near the end. These are on a large enough scale to locate a star or planet or comet when its right ascension and declination are given.
    [Show full text]
  • Podręcznik Wizualnych Obserwacji Gwiazd Zmiennych AAVSO
    Podręcznik Wizualnych Obserwacji Gwiazd Zmiennych AAVSO Wydanie poprawione - Styczeń 2005 Wydanie polskie – Grudzień 2007 The American Association of Variable Star Observers 49 Bay State Road Cambridge, Massachusetts 02138 U. S. A. Tel: 617-354-0484 Fax: 617-354-0665 Email: [email protected] Web: http://www.aavso.org Tłumacze polscy: Andrzej Grabowski Jerzy Speil COPYRIGHT 2007 by the American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138 U. S. A. ISBN 1-878174-76-2 ii PRZEDMOWA DO WYDANIA 2001 Z dużą przyjemnością prezentujemy zweryfikowane i poprawione wydanie Podręcznika Wizualnych Obserwacji Gwiazd Zmiennych. Z założenia podręcznik ma być wyczerpującym przewodnikiem obserwacji gwiazd zmiennych. Zawiera on dużo podstawowych informacji z wydanego w 1970r. przez Margaret W. Mayall, byłej dyrektor AAVSO, Podręcznika Obserwacji Gwiazd Zmiennych, jak również informacje z różnych materiałów obserwacyjnych AAVSO opublikowanych od tego czasu. Podręcznik ten dostarcza najnowszych informacji na temat wykonywania obserwacji gwiazd zmiennych i składania sprawozdań z obserwacji do AAVSO. Dla nowych obserwatorów podręcznik ten jest podstawowym narzędziem – jedną z publikacji, z których może on uzyskać wszystkie potrzebne informacje do rozpoczęcia programu obserwacyjnego gwiazd zmiennych. Z drugiej strony, długoletni i doświadczeni obserwatorzy oraz ci, powracający do obserwacji gwiazd zmiennych, mogą go uznać przydatnym jako podręczne, szybkie źródło informacji lub tekst odświeżający, pomocny w odkrywaniu nowych aspektów obserwacji gwiazd zmiennych. Podręcznik ten zapozna Cię ze znormalizowanymi procesami i procedurami obserwacji gwiazd zmiennych – bardzo ważną częścią wykonywania i dostarczania Twoich obserwacji do AAVSO. Znajdziesz tutaj nowe informacje, przedstawione w przydatnej formie, z rozdziałami ułożonymi według wzrastającej trudności i zgrupowanymi według treści przedmiotu. Dla tych, którzy wolą mieć istotne informacje w swoim notesie lub foliowych koszulkach, jest wiele stron do skopiowania.
    [Show full text]
  • Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
    1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years.
    [Show full text]
  • Chapter 16 the Sun and Stars
    Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • Constellation Studies - Equatorial Sky in Winter
    Phys1810: General Astronomy 1 W2014 Constellation Studies - Equatorial Sky in Winter Preparation before the observing session - Read "Notes on Observing" thoroughly. - Find all the targets listed below using Starry Night and your star charts. - Note: The observatory longitude is 97.1234° W, the latitude is 49.6452° N and elevation is 233 meters. - Observe any predicted events and record your observations during the observing session In the list of constellations below, the name of the constellation is underlined followed by the genitive case of the name in parenthesis followed by the three-letter abbreviation. Note that references to stars such as α UMa, spoken as alpha Ursae Majoris (note genitive case), literally means alpha of Ursa Major. The Greek letters are usually assigned in order of brightness in the constellation (α -- brightest). Note that the constellation, Ursa Major, is a major exception to this rule. As soon as you get to the observatory the following 3 constellations should be sketched on a full page diagram making sure that their relative positions to each other and to the horizon are drawn as accurately as possible - this means completing the sketch in about 15 minutes. You need to repeat the sketch one hour later. Be sure to indicate the time and the location of the horizon on your diagram. Ursa Major (Ursae Majoris) UMa: (The Great Bear, The Big Dipper, The Plow) Through all ages, Ursa Major has been known under various names. It is linked with the nymph Kallisto, the daughter of Lycaon, a king of Arcadia in Greek mythology. Moving along the asterism of the dipper from the lip identify the stars Dubhe (α UMa), Merak (β UMa), Phecda (γ UMa), Megrez (δ UMa), Alioth (ε UMa), Mizar (ζ UMa), and Alkaid (η UMa).
    [Show full text]
  • Focus on Zeta Ursae Majoris - Mizar
    Vol. 3 No. 2 Spring 2007 Journal of Double Star Observations Page 51 Stargazers Corner: Focus on Zeta Ursae Majoris - Mizar Jim Daley Ludwig Schupmann Observatory (LSO) New Ipswich, New Hampshire Email: [email protected] Abstract: : This is a general interest article for both the double star viewer and armchair astronomer alike. By highlighting an interesting pair, hopefully in each issue, we have a place for those who love doubles but may have little interest in the rigors of measurements and the long lists of results. Your comments about these mini-articles are welcomed. Arabs long ago named Alcor “Saidak” or “the proof” as Introduction they too used it as a test of vision. Alcor shares nearly My first view of a double star through a telescope the same space motion with Mizar and about 20 other was an inspiring sight and just as with many new stars in what is called the Ursa Major stream or observers today, the star was Mizar. As a beginning moving cluster. The Big Dipper is considered the amateur telescope maker (1951) I followed tradition closest cluster in the solar neighborhood. Alcor’s and began to use closer doubles for resolution testing apparent separation from Mizar is more than a quar- the latest homemade instrument. Visualizing the ter light year and this alone just about rules out this scale of binaries, their physical separation, Keplerian wide pair from being a physical (in a binary star motion, orbital period, component diameters and sense) system and the most recent line-of-sight dis- spectral characteristics, all things I had heard and tance measurements give a difference between them read of, seemed a bit complicated at the time and, I of about 3 light years, ending any ideas of an orbiting might add, more so now! Through the years I found pair.
    [Show full text]
  • Cyclotron Radiation from Magnetic Cataclysmic Variables (Polarization, Plasmas, Magnetized, Stars, Herculis, Puppis)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1985 Cyclotron Radiation From Magnetic Cataclysmic Variables (Polarization, Plasmas, Magnetized, Stars, Herculis, Puppis). Paul Everett aB rrett Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Barrett, Paul Everett, "Cyclotron Radiation From Magnetic Cataclysmic Variables (Polarization, Plasmas, Magnetized, Stars, Herculis, Puppis)." (1985). LSU Historical Dissertations and Theses. 4040. https://digitalcommons.lsu.edu/gradschool_disstheses/4040 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “ Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]