Simple and Inexpensive DNA Extraction Protocol for Studying the Bacterial Composition of Sludges Used in Microbial Fuel Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ID 2 | Issue No: 4.1 | Issue Date: 29.10.14 | Page: 1 of 24 © Crown Copyright 2014 Identification of Corynebacterium Species
UK Standards for Microbiology Investigations Identification of Corynebacterium species Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 1 of 24 © Crown copyright 2014 Identification of Corynebacterium species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 2 of 24 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Corynebacterium species Contents ACKNOWLEDGMENTS ......................................................................................................... -
Page 1 Template Last Revised 8.28.12 Unit Title: DNA Extraction Date Developed/Last Revised: March 4, 2013 Unit Author(S): Jeani
Unit Title: DNA Extraction Grade Level: 7 Date Developed/Last Revised: March 4, 2013 Time Frame: 60 - 270 minutes Unit Author(s): Jeanine Nakakura, Leslie Hamasaki Primary Content Area: Life Science/Biology UNIT DESCRIPTION: Students will extract DNA from strawberries. As an extension, students can extract DNA from other foods or their cheek cells, and develop a DNA Extraction kit. Big Ideas (Student Insights that Will Be Developed Over the Course of the Unit): • All living organisms—from bacteria to plants, animals, and humans—contain DNA • Genes and chromosomes determine the expressions of inherited traits • DNA is stored in a cell’s nucleus and can be extracted using a few simple steps Essential Questions (Questions that Will Prompt Students to Connect to the Big Ideas): • Why is DNA so important in biology? • How can I predict what traits will be passed from one generation to another? • How are genes and chromosomes important in determining heredity traits? BENCHMARKS/STANDARDS/LEARNING GOALS Science (HCPS III) Science • SC.7.1.1 Design and safely conduct a scientific investigation to answer a question or test a hypothesis • SC.7.5.2 Describe how an inherited trait can be determined by one or more genes which are found on chromosomes CTE (HCPS III) echnology T • Standard 1: TECHNOLOGICAL DESIGN: Design, modify, and apply technology to effectively and efficiently solve problems CTE (HCPS III) Engineering • CTE.7.1.1 Apply the design process through a set of methodical steps for turning ideas into useful and ethical products and systems • CTE 7.1.2 Assess a product or solution for possible modifications Page 1 Template last revised 8.28.12 Math (CCSS) Mathematics • 7.EE.3 Solve real-life and mathematical problems using numerical and algebraic expressions and equations Literacy (CCSS) 7 (WHST.7.2) Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. -
Kansas Journal of Medicine, Volume 11 Issue 1
VOLUME 11 • ISSUE 1 • Feb. 2018 WHAT’S INSIDE: ORIGINAL RESEARCH • CASE STUDIES • REVIEW TABLE OF CONTENTS ORIGINAL RESEARCH 1 Safe Sleep Practices of Kansas Birthing Hospitals Carolyn R. Ahlers-Schmidt, Ph.D., Christy Schunn, LSCSW, Cherie Sage, M.S., Matthew Engel, MPH, Mary Benton, Ph.D. CASE STUDIES 5 Neck Trauma and Extra-tracheal Intubation Vinh K. Pham, M.D., Justin C. Sandall, D.O. 8 Strongyloides Duodenitis in an Immunosuppressed Patient with Lupus Nephritis Ramprasad Jegadeesan, M.D., Tharani Sundararajan, MBBS, Roshni Jain, MS-3, Tejashree Karnik, M.D., Zalina Ardasenov, M.D., Elena Sidorenko, M.D. 11 Arcanobacterium Brain Abscesses, Subdural Empyema, and Bacteremia Complicating Epstein-Barr Virus Mononucleosis Victoria Poplin, M.D., David S. McKinsey, M.D. REVIEW 15 Transgender Competent Provider: Identifying Transgender Health Needs, Health Disparities, and Health Coverage Sarah Houssayni, M.D., Kari Nilsen, Ph.D. 20 The Increased Vulnerability of Refugee Population to Mental Health Disorders Sameena Hameed, Asad Sadiq, MBChB, MRCPsych, Amad U. Din, M.D., MPH KANSAS JOURNAL of MEDICINE deaths attributed to SIDS had one or more factors contributing to an unsafe sleep environment.3 The American Academy of Pediatrics (AAP) recommendations for a safe infant sleeping environment delineate a number of modifi- able factors to reduce the risk of sleep-related infant deaths.4 Factors Safe Sleep Practices of Kansas Birthing include back sleep only, room-sharing without bed-sharing, use of a Hospitals firm sleep surface, keeping soft bedding and other items out of the Carolyn R. Ahlers-Schmidt, Ph.D.1, Christy Schunn, LSCSW2, crib, and avoiding infant overheating. -
The Evolution of DNA Extraction Methods
American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Review Article Copy Right@ Preetha J Shetty The Evolution of DNA Extraction Methods Mariyam Dairawan1 and Preetha J Shetty2* 1. Medical Student, College of Medicine, Gulf Medical University, UAE 2. Department of Biomedical Sciences, Gulf Medical University, UAE *Corresponding author: Dr. Preetha J Shetty, Associate Professor, Department of Biomedical Sciences, College of Medicine, Gulf Medical University, UAE. To Cite This Article: Preetha J Shetty, The Evolution of DNA Extraction Methods. 2020 - 8(1). AJBSR.MS.ID.001234. DOI: 10.34297/AJBSR.2020.08.001234. Received: February 18, 2020; Published: March 11, 2020 Abstract Since the first DNA extraction performed by Friedrich Miescher in 1869, scientists have made extraordinary progress in designing extraction methods that are more reliable, easier and faster to perform, more cost-effective and produce a higher yield. The classic liquid-liquid DNA extraction method involves the use of organic and inorganic reagents such as phenol-chloroform which pose a toxic threat to humans. Many newer techniques are now based on physical extraction, which has significantly contributed to developing simpler methods for DNA handling, such as extraction using magnetic beads and cellulose-based filter paper. With the advent of gene-editing and personalized medicine, there has been an increase in the demand for reliable and efficient DNA isolation methods that can yield adequate quantities of high-quality DNA with minimal impurities. The current review addresses the evolution of different DNA extraction techniques from solvent-based methods to physical extraction methods each with its varyingKeywords: set of advantages and limitations. -
Improved Method for DNA Extraction and Purification from Tetrahymena
Protocol Improved Method for DNA Extraction and Purification from Tetrahymena pyriformis Ezzouhra El Maaiden 1,2, Youssef El Kharrassi 1, Abdel Khalid Essamadi 1, Khadija Moustaid 2 and Boubker Nasser 1,* 1 Laboratory of Biochemistry and Neurosciences, Department of Biology, University Hassan I, BP 577, 26000 Settat, Morocco; [email protected] (E.E.M.); [email protected] (Y.E.K.); [email protected] (A.K.E.) 2 Laboratory of Applied Chemistry and Environment, Department of Chemistry, University Hassan I, BP 577, 26000 Settat, Morocco; [email protected] * Correspondence: [email protected]; Tel.: +212-067-373-9479 Received: 16 March 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Tetrahymena pyriformis (protozoa) is intensely investigated as a model organism, offering numerous advantages in comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is a vital step of any molecular experiment, here a new mixed surfactant (Sodium dodecyl sulfate (SDS) 20%/Triton X-100) was adopted for effective DNA extraction from Tetrahymena pyriformis under an easy, fast protocol. The efficiency of this technique was then compared with three widely-used alternative techniques, namely the Chelex 100 matrix, Ammonium pyrrolidine dithiocarbamate (APD) complex and SDS–chloroform methods. DNA extraction was analyzed by pulsed-field gel electrophoresis, spectral measurement, fluorometry (Qubit), restriction enzyme digestion, and polymerase chain reaction. Data analysis revealed that the quantity and quality of the recovered DNA varied depending on the applied DNA extraction method. The new method (SDS 20%/Triton X-100) was the most efficient for extracting DNA from Tetrahymena pyriformis with high integrity and purity, affordable cost, less time, and suitability for molecular applications. -
(Publication Only) Corynebacterium Spp. and Arcanobacterium Haemolyticum Identification
R2737 Abstract (publication only) Corynebacterium spp. and Arcanobacterium haemolyticum identification. Usefulness of the Vitek 2 ANC card R. Soloaga*, N. Carrion, C. Barberis, M. Almuzara, L. Guelfand, J. Pidone, C. Vay (Buenos Aires, AR) Introduction: Corynebacterium diphtheriae and C.ulcerans may be isolated from suspected cases of classical diphtheria, cutaneous diphtheria and very rarely from other clinical infections. Non-diphtheric corynebacteria are opportunistic pathogens, especially in nosocomial setting where they have been associated with endocarditis, pulmonary infection, medical devices infections and urinary tract infection. A. haemolyticum infection manifests as exudative pharyngitis and tonsillitis accompanied by cervical lymphadenopathy and less commonly, the organism causes deep-seated infections and skin and soft-tissue infections Objective: The aim of this study was to determine the Vitek 2 ANC card (bioMèrieux, Marcy l’Etoile, France) performance for identification of the most frequently clinical relevant Corynebacterium species and Arcanobacterium haemolyticum Methods: Sixty-two unique clinical isolates (2 C. diphtheriae, 7 C. jeikeium, 10 C. amycolatum, 15 C.striatum, 12 C.urealyticum, 1 C.minutissimum, 8 C. pseudodiphtheriticum, 1 C. ulcerans and 6 Arcanobacterium haemolyticum) represented the 9 taxa included in the Vitek 2 ANC database and 6 strains represented related species not included in the database were analyzed in this study. All the strains were identified using 16S rRNA gene sequencing (16S) as the reference method. For Vitek identification, all the strains were isolated in pure culture on Columbia blood agar. After 24-48 h incubation to 35ºC in ambient air, a bacterial suspension was made in 0.45% aqueous ClNa and adjusted to a McFarland of 2.7-3.2 with Vitekk 2 Densicheck instrument (bioMérieux).The inoculated card was loaded into the Vitek 2C automated identification system according to the manufacturer´s instruction. -
DNA Extraction
DNA Extraction Learning Objectives: Students learn about DNA, cell structure, and basic chemical separations. GRADE LEVEL SNEAK PEAK inside … ACTIVITY 4–8 Students extract DNA from strawberries. SCIENCE TOPICS STUDENT SUPPLIES Solutions and Mixtures see next page for more supplies Techniques strawberries Organic and Biochemistry sealing plastic bags dish soap PROCESS SKILLS salt meat tenderizer Describing and Defining isopropyl alcohol, etc…. Explaining Evaluating ADVANCE PREPARATION see next page for more details GROUP SIZE dilute soap mix tenderizer and salt together, etc…. 1–3 OPTIONAL EXTRAS DEMONSTRATION If available, goggles are recommended for this activity. Modeling the Procedure (p. C - 22) EXTENSIONS Animal DNA (p. C - 29) Other DNA Sources (p. C - 30) TIME REQUIRED Advance Preparation Set Up Activity Clean Up 15 minutes 15 minutes 20 minutes 15 minutes the day before DNA Extraction C – 19 Chemistry in the K–8 Classroom Grades 4–8 2007, OMSI SUPPLIES Item Amount Needed strawberries 1 per group sealing plastic bags (e.g., ZiplocTM) 1 per group liquid dish soap ½ teaspoon per group 99% isopropyl alcohol (or lower, e.g., 70% ¼ cup per group rubbing alcohol) meat tenderizer 1 tablespoon per class OR OR papaya or pineapple juice ¼ cup juice per class salt 1 tablespoon per class tall, clear, narrow plastic cups (8 oz. or 12 oz.) 2 per group plastic spoon 1 per group pop-top squeeze bottles (e.g., water or sports drink) 1 per group freezer or bucket of ice 1 per class For Extension or Demonstration supplies, see the corresponding section. ADVANCE PREPARATION Supplies Preparation Strawberries: Purchase fresh or thawed, green tops on or off. -
Detection and Quantitation of Residual Host Cell DNA
Detection and Quantitation of Residual Host Cell DNA White Paper Author: Phil Kuhlman, Biopharmaceutical Technical Specialist 1 Abstract All biological drug products are required to be characterised for safety, quality and efficacy. ICH Q6B gives clear guidance on the requirements for product characterisation including the detection of product and process related impurities. This white paper discusses an approach to monitoring the levels of residual DNA derived from the production host for the drug including consideration of practical control of contamination as well as the MHRA’s guidance on performing PCR analysis. Contents Introduction 3 Process control 3 Batch monitoring 3 Quantitation of residual host cell nucleic acid 4 The requirement for sample extraction 5 HCDNA testing at RSSL 5 Validation of residual host cell DNA analysis 6 Contamination control and assay validity 6 Conclusion 7 2 Introduction Process control The expression of biological products using recombinant The demonstration to the regulatory authorities that DNA technology has enabled the use of peptides and the drug manufacturing process is able to routinely proteins for therapeutic use. One of the main concerns and consistently remove any possible residual DNA with this expression technology especially in immortal contamination leads to no further need for routine cell lines is the possibility of transference of the immortal residual host cell DNA release testing of individual trait to the end user of the medication. Thereby, batches. This would typically involve the demonstration potentially inducing cancer. of clearance of intentionally added host cell DNA, of the The World Health Organisation (WHO), has released size distribution expected in the drug manufacturing guidance1,2 requiring the monitoring throughout the process, at greater than the expected concentration of manufacturing process of HCDNA to demonstrate residual DNA to steps in the process and quantifying the reduction to safe levels, either by process validation or lot reduction in DNA. -
Arcanobacterium Haemolyticum Type Strain (11018)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). Permalink https://escholarship.org/uc/item/03f632gf Journal Standards in genomic sciences, 3(2) ISSN 1944-3277 Authors Yasawong, Montri Teshima, Hazuki Lapidus, Alla et al. Publication Date 2010-09-28 DOI 10.4056/sigs.1123072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:126-135 DOI:10.4056/sigs.1123072 Complete genome sequence of Arcanobacterium T haemolyticum type strain (11018 ) Montri Yasawong1, Hazuki Teshima2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Tijana Glavina Del Rio2, Hope Tice2, Jan-Fang Cheng2, David Bruce2,3, Chris Detter2,3, Roxanne Tapia2,3, Cliff Han2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Manfred Rohde1, Johannes Sikorski6, Rüdiger Pukall6, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2, Nikos C. Kyrpides2, and Hans-Peter Klenk6* 1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: obligate parasite, human pathogen, pharyngeal lesions, skin lesions, facultative anaerobe, Actinomycetaceae, Actinobacteria, GEBA Arcanobacterium haemolyticum (ex MacLean et al. -
Evaluation Ofapi Coryne System for Identifying Coryneform Bacteria
756 Y Clin Pathol 1994;47:756-759 Evaluation of API Coryne system for identifying coryneform bacteria J Clin Pathol: first published as 10.1136/jcp.47.8.756 on 1 August 1994. Downloaded from A Soto, J Zapardiel, F Soriano Abstract that are aerobe or facultatively aerobe, non- Aim-To identify rapidly and accurately spore forming organisms of the following gen- coryneform bacteria, using a commercial era: Corynebacterium, Listeria, Actinomyces, strip system. Arcanobacterium, Erysipelothrix, Oerskovia, Methods-Ninety eight strains of Cory- Brevibacterium and Rhodococcus. It also per- nebacterium species and 62 additional mits the identification of Gardnerella vaginalis strains belonging to genera Erysipelorix, which often has a diphtheroid appearance and Oerskovia, Rhodococcus, Actinomyces, a variable Gram stain. Archanobacterium, Gardnerella and We studied 160 organisms in total from dif- Listeria were studied. Bacteria were ferent species of the Corynebacterium genus, as identified using conventional biochemi- well as from other morphological related gen- cal tests and a commercial system (API- era or groups, some of them not included in Coryne, BioMerieux, France). Fresh rab- the API Coryne database. bit serum was added to fermentation tubes for Gardnerella vaginalis isolates. Results-One hundred and five out ofthe Methods 160 (65.7%) organisms studied were cor- The study was carried out on Gram positive rectly and completely identified by the bacilli belonging to the genera Coryne- API Coryne system. Thirty five (21.8%) bacterium, Erysipelothrix, Oerskovia, Rhodococcus, more were correctly identified with addi- Actinomyces, Arcanobacterium, Gardnerella and tional tests. Seventeen (10-6%) organisms Listeria included in the API Coryne database were not identified by the system and (table 1). -
The Diversity of Cultivable Hydrocarbon-Degrading Bacteria Isolated from Crude Oil Contaminated Soil and Sludge from Arzew Refinery in Algeria
THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. 2Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.9.1.70-77 ARTICLE INFO ABSTRACT Received 27. 3. 2018 The use of autochtonious bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon Revised 19. 2. 2019 pollutants. The isolation, selection and identification of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most Accepted 14. 3. 2019 promising strains for decontaminate a specific site. In this study, two different media, a minimal medium supplemented with petroleum Published 1. 8. 2019 and with oil refinery sludge as sole carbon source, were used for the isolation of native hydrocarbon-degrading bacterial strains from crude oil contaminated soils and oil refinery sludges which allowed isolation of fifty-eight strains.The evalution of diversity of twenty- two bacterials isolates reveled a dominance of the phylum Proteobacteria (20/22 strains), with a unique class of Alphaproteobacteria, Regular article the two remaining strains belong to the phylum Actinobacteria. Partial 16S rRNA gene sequencing performed on isolates showed high level of identity with known sequences. -
Potential Evidence for Transgenerational Epigenetic Memory in Arabidopsis Thaliana Following Spaceflight ✉ Peipei Xu 1,2, Haiying Chen1,2, Jinbo Hu1 & Weiming Cai 1
ARTICLE https://doi.org/10.1038/s42003-021-02342-4 OPEN Potential evidence for transgenerational epigenetic memory in Arabidopsis thaliana following spaceflight ✉ Peipei Xu 1,2, Haiying Chen1,2, Jinbo Hu1 & Weiming Cai 1 Plants grown in spaceflight exhibited differential methylation responses and this is important because plants are sessile, they are constantly exposed to a variety of environmental pres- sures and respond to them in many ways. We previously showed that the Arabidopsis genome exhibited lower methylation level after spaceflight for 60 h in orbit. Here, using the offspring of the seedlings grown in microgravity environment in the SJ-10 satellite for 11 days and 1234567890():,; returned to Earth, we systematically studied the potential effects of spaceflight on DNA methylation, transcriptome, and phenotype in the offspring. Whole-genome methylation analysis in the first generation of offspring (F1) showed that, although there was no significant difference in methylation level as had previously been observed in the parent plants, some residual imprints of DNA methylation differences were detected. Combined DNA methylation and RNA-sequencing analysis indicated that expression of many pathways, such as the abscisic acid-activated pathway, protein phosphorylation, and nitrate signaling pathway, etc. were enriched in the F1 population. As some phenotypic differences still existed in the F2 generation, it was suggested that these epigenetic DNA methylation modifications were partially retained, resulting in phenotypic differences in the offspring. Furthermore, some of the spaceflight-induced heritable differentially methylated regions (DMRs) were retained. Changes in epigenetic modifications caused by spaceflight affected the growth of two future seed generations. Altogether, our research is helpful in better understanding the adaptation mechanism of plants to the spaceflight environment.