Evaluation Ofapi Coryne System for Identifying Coryneform Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation Ofapi Coryne System for Identifying Coryneform Bacteria 756 Y Clin Pathol 1994;47:756-759 Evaluation of API Coryne system for identifying coryneform bacteria J Clin Pathol: first published as 10.1136/jcp.47.8.756 on 1 August 1994. Downloaded from A Soto, J Zapardiel, F Soriano Abstract that are aerobe or facultatively aerobe, non- Aim-To identify rapidly and accurately spore forming organisms of the following gen- coryneform bacteria, using a commercial era: Corynebacterium, Listeria, Actinomyces, strip system. Arcanobacterium, Erysipelothrix, Oerskovia, Methods-Ninety eight strains of Cory- Brevibacterium and Rhodococcus. It also per- nebacterium species and 62 additional mits the identification of Gardnerella vaginalis strains belonging to genera Erysipelorix, which often has a diphtheroid appearance and Oerskovia, Rhodococcus, Actinomyces, a variable Gram stain. Archanobacterium, Gardnerella and We studied 160 organisms in total from dif- Listeria were studied. Bacteria were ferent species of the Corynebacterium genus, as identified using conventional biochemi- well as from other morphological related gen- cal tests and a commercial system (API- era or groups, some of them not included in Coryne, BioMerieux, France). Fresh rab- the API Coryne database. bit serum was added to fermentation tubes for Gardnerella vaginalis isolates. Results-One hundred and five out ofthe Methods 160 (65.7%) organisms studied were cor- The study was carried out on Gram positive rectly and completely identified by the bacilli belonging to the genera Coryne- API Coryne system. Thirty five (21.8%) bacterium, Erysipelothrix, Oerskovia, Rhodococcus, more were correctly identified with addi- Actinomyces, Arcanobacterium, Gardnerella and tional tests. Seventeen (10-6%) organisms Listeria included in the API Coryne database were not identified by the system and (table 1). We also studied some organisms three (1.9%) were misidentified. belonging to genera that occasionally present Conclusions-The system was a good a diphtheroid appearance and are not alternative for identification of coryne- included in the system database (table 2). A form organisms. When occasionally per- total of 160 organisms were evaluated, includ- http://jcp.bmj.com/ formed with some additional tests, this ing 42 reference strains. Clinical isolates were method permits reliable and rapid identi- obtained from blood (seven isolates), skin (17 fication of coryneform organisms com- isolates), urine (13 isolates), calcule (one iso- pared with conventional methods. late), drainage (one isolate), exudate (one iso- late) and abscess (one isolate). The rest of the (7 Clin Pathol 1994;47:756-759) organisms came from stock collections. All the strains were kept at - 70°C before use and on September 27, 2021 by guest. Protected copyright. cultivated either aerobically or, if necessary, in Human infections by Coryneform sp are not a CO, atmosphere for 24 to 48 hours at 35°C only increasing but microbiologists are more on heart-infusion agar supplemented with 5% aware of their possible importance, mainly in sheep blood. high risk and immunosuppressed patients. The strains were identified using tech- Over the past two decades other Coryne- niques cited by Hollis and Weaver,"3 Bayston bacterium species, different from Coryne- and Higgins,'4 Coyle' and others.'5-'7 The fol- bacterium diphtheriae, have been found in lowing tests were used: Gram staining; colony severe infections in people.'-3 Bacteraemia, pigmentation; haemolysis; catalase produc- endocarditis, peritonitis, osteomyelitis and tion; urease utilisation, gelatin, hippurate and infection of the urinary and respiratory tracts aesculin hydrolysis; the Voges-Proskauer reac- are the most common infections associated tion; nitrate reduction; acid production from Department of with Corynebacterium sp.4 l glucose, maltose, mannitol, xylose, sucrose, Clinical Microbiology, These bacteria, which are common in clini- lactose and glycogen in fermentation broth, Fundacion Jimenez Diaz, Madrid, Spain cal samples, may be disregarded by microbiol- with the addition of 10% rabbit serum for A Soto ogists partly because they are considered Gardnerella vaginalis. Oxidation and fermenta- J Zapardiel non-pathogenic or "contaminant," but also tion tests were performed for C aquaticum F Soriano because there are no simple methods to iden- strains. Casein, xanthine, and tyrosine hydrol- Correspondence to: Dr A Soto, Department of tify them correctly in a routine laboratory.2 ysis were used to identify Nocardia spp. Most Infectious Diseases and Interest is increasing in the isolation and iden- of the strains were identified to species level Bacteriology, Royal Postgraduate Medical tification of these organisms, and this led us to using these tests but Oerskovia spp were only School, Hammersmith evaluate the API Coryne system by comparing identified to genus level. Hospital, Du Cane Road, London W12 ONN it with conventional identification methods. The API Coryne system consists of 20 Accepted for publication This system is a micromethod for the identifi- microtubes containing dehydrated substrates 9 February 1994 cation of Gram positive Coryneform organisms for the demonstration of 11 enzymatic Evaluation ofAPI Cotyne system 757 Table 1 Corynebacterium species and related genera studied included in the API Coryne The readings, except for the aesculin, ure- database ase, and gelatin tests, were done after adding Strains Total Clinical Stock Reference the appropriate reagents. The fermentation J Clin Pathol: first published as 10.1136/jcp.47.8.756 on 1 August 1994. Downloaded from Corynebacterium urealyticum 27 22 2 ATCC 43042, reactions were considered positive when they ATCC 43043, ATCC 43044 turned yellow. Identification was made using Corynebacteriumjeikeium 22 15 5 ATCC 43734, CCUG 24871 Corynebacterium striatum 5 4 ATCC 6940 the table provided by BioMerieux and, when Corynebacterium xerosis 5 4 ATCC 373 there were difficulties, by contacting the API Corynebacterium diphtheriae 2 2 Corynebacterium pseudotuberculosis 4 3 ATCC 19410 computer service. The interpretation was car- Corynebactenium bovis 2 ATCC 7715, CCUG 2705 ried out adding data on macroscopic and Corynebacterium pseudodiphtheriticum 5 4 ATCC 10700 Corynebacterum kutscheri 2 1 ATCC 15677 microscopic morphology, catalase, and Corynebacterium renale 2 1 ATCC 19412 haemolysis, as well as the numerical profile of Corynebacterium cystitidis 1 ATCC 29593 Corynebacterium pilosum 1 ATCC 29592 the API Coryne system. Corynebacterium minutissimum 2 ATCC 23348, CCUG 541 All the strains with a profile of "acceptable" Corynebacterium ulcerans 6 4 CCUG 16556, NCTC 7907 Corynebacterium aquaticum 3 2 ATCC 14665 identification or better were considered cor- Coryneform CDC group F, 3 1 2 rectly identified. Some additional tests were Coryneforn CDC group A4 2 2 Corynefonn CDC group G, 1 1 performed on those strains with a profile of Oerskovia sp 4 3 ATCC 25835 "good identification to genus" within the Erysipelothrix rhusiopathiae 4 4 Rhodococcus equi 8 1 7 group C renaleiC cystitidis and C aquaticuml Listeria monocytogenes 11 9 ATCC 19111,NCTC 11994 Coryneform CDC group A, according to the Listeria innocua 2 2 Listeria murrayi 1 ATCC 25401 manufacturer's protocol. These tests included Listeria grayi 1 ATCC 25400 growth in 6% sodium chloride, production of Listeria ivannovii 1 1 Listeria seeligeri 2 2 acid from trehalose or fructose, the Voges- Arcanobacterium haemolyticum 5 4 ATCC 9345 Proskauer reaction, the CAMP test, growth at Actinomyces pyogenes 4 3 ATCC 19411 GardnereUla vaginalis 4 1 2 ATCC 14018 a pH of 5-4 and Tween-80 hydrolysis. The strains with a profile of "low", "doubtful" or "insufficient discrimination" were considered unidentified. When the profile was good at Table 2 Other species studied not included in the API Coryne database species level but did not match the conven- Strains Total Clinical Stock Reference tional identification, it was considered incor- rectly identified. Corynebacterium ammoniogenes 1 ATCC 6871 Corynebacterium callunae 1 ATCC 15991 Corynebacteriumflavescens 1 ATCC 10340 Corynebacterium vitarumen 1 ATCC 10234 Clavibacter michiganense 1 CCUG 580 Results Curtobacteriumflaccumfaciens 1 CCUG 23824 Of the 160 organisms studied using the API Rhodococcus rhodochrous 1 ATCC 11048 Propionibacterium avidum 2 1 ATCC 25577 system, 105 (65-7%) of them were correctly Propionibacterium granulosum 1 ATCC 25564 and completely identified in 24 hours to Rothia dentocariosa 2 1 ATCC 17931 Nocardia asteroides 2 species level, 35 more (21-8%) were incom- 1 ATCC 19247 http://jcp.bmj.com/ Nocardia brasiliensis 1 ATCC 19296 pletely identified but finally correctly identi- Nocardiafarcinica 1 ATCC 3318 Lactobacillus acidophilus 2 1 ATCC 832 fied with additional tests, 17 (10.6%) were not identified as the profile number did not correspond to any organism, and in three (1 9%) cases the strains were misidentified. activities (nitrate reduction, pyrazinamidase, Most strains (87 5%) were correctly identified alkaline in 24 hours or after additional pyrrolidonyl arylamidase, phos- tests (table 3). on September 27, 2021 by guest. Protected copyright. phatase, glucuronidase, ,B galactosidase, Six strains of Cjeikeium had a good profile at a glucosidase, N-Acetyl-f,glucosaminidase, genus level (profile number 2100324) and aesculin, urease and hydrolysis of gelatin) or may represent a less common biotype. the fermentation of eight sugars (glucose, Additional tests were required for correct ribose, xylose, mannitol, maltose, lactose, identification (growth in 6%
Recommended publications
  • Accuprobe Mycobacterium Avium Complex Culture
    non-hybridized and hybridized probe. The labeled DNA:RNA hybrids are measured in a Hologic luminometer. A positive result is a luminometer reading equal to or greater than the cut-off. A value below this cut-off is AccuProbe® a negative result. REAGENTS Note: For information on any hazard and precautionary statements that MYCOBACTERIUM AVIUM may be associated with reagents, refer to the Safety Data Sheet Library at www.hologic.com/sds. COMPLEX CULTURE Reagents for the ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX IDENTIFICATION TEST CULTURE IDENTIFICATION TEST are provided in three separate reagent kits: INTENDED USE The ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX CULTURE ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX PROBE KIT IDENTIFICATION TEST is a rapid DNA probe test which utilizes the Probe Reagent. (4 x 5 tubes) technique of nucleic acid hybridization for the identification of Mycobacterium avium complex Mycobacterium avium complex (M. avium complex) isolated from culture. Lysing Reagent. (1 x 20 tubes) Glass beads and buffer SUMMARY AND EXPLANATION OF THE TEST Infections caused by members of the M. avium complex are the most ACCUPROBE CULTURE IDENTIFICATION REAGENT KIT common mycobacterial infections associated with AIDS and other Reagent 1 (Lysis Reagent). 1 x 10 mL immunocompromised patients (7,15). The incidence of M. avium buffered solution containing 0.04% sodium azide complex as a clinically significant pathogen in cases of chronic pulmonary disease is also increasing (8,17). Recently, several Reagent 2 (Hybridization Buffer). 1 x 10 mL laboratories have reported that the frequency of isolating M. avium buffered solution complex is equivalent to or greater than the frequency of isolating M.
    [Show full text]
  • Artus Mycobac. Diff. LC PCR Kit Handbook 10/2015 2
    October 2015 artus® Mycobac. diff. LC PCR Kit Handbook 24 96 Version 1 Quantitative in vitro diagnostics For use with the LightCycler® 1.1/1.2/1.5 and LightCycler 2.0 instruments 4556063 (24 reactions) 4556065 (96 reactions) QIAGEN GmbH QIAGEN Strasse 1 40724 Hilden GERMANY R4 1046963EN Sample to Insight__ Contents Summary and Explanation ...................................................................................................4 Principle of the Procedure ....................................................................................................4 Materials Provided .............................................................................................................6 Kit contents ..............................................................................................................6 Materials Required but Not Provided ....................................................................................7 Warnings and Precautions ..................................................................................................8 Warnings ................................................................................................................8 Reagent Storage and Handling ............................................................................................8 Procedure ..........................................................................................................................9 Important points before starting ..................................................................................9
    [Show full text]
  • ID 2 | Issue No: 4.1 | Issue Date: 29.10.14 | Page: 1 of 24 © Crown Copyright 2014 Identification of Corynebacterium Species
    UK Standards for Microbiology Investigations Identification of Corynebacterium species Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 1 of 24 © Crown copyright 2014 Identification of Corynebacterium species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 2 of 24 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Corynebacterium species Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • An Enhanced Characterization of the Human Skin Microbiome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914820; this version posted January 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 An enhanced characterization of the human skin microbiome: a new biodiversity of 2 microbial interactions 3 4 Akintunde Emiola1, Wei Zhou1, Julia Oh1* 5 6 1The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA 7 *Corresponding author. [email protected] 8 9 10 ABSTRACT 11 12 The healthy human skin microbiome is shaped by skin site physiology, individual-specific factors, 13 and is largely stable over time despite significant environmental perturbation. Studies identifying 14 these characteristics used shotgun metagenomic sequencing for high resolution reconstruction 15 of the bacteria, fungi, and viruses in the community. However, these conclusions were drawn from 16 a relatively small proportion of the total sequence reads analyzable by mapping to known 17 reference genomes. ‘Reference-free’ approaches, based on de novo assembly of reads into 18 genome fragments, are also limited in their ability to capture low abundance species, small 19 genomes, and to discriminate between more similar genomes. To account for the large fraction 20 of non-human unmapped reads on the skin—referred to as microbial ‘dark matter’—we used a 21 hybrid de novo and reference-based approach to annotate a metagenomic dataset of 698 healthy 22 human skin samples. This approach reduced the overall proportion of uncharacterized reads from 23 42% to 17%. With our refined characterization, we revisited assumptions about the skin 24 microbiome, and demonstrated higher biodiversity and lower stability, particularly in dry and moist 25 skin sites.
    [Show full text]
  • Kansas Journal of Medicine, Volume 11 Issue 1
    VOLUME 11 • ISSUE 1 • Feb. 2018 WHAT’S INSIDE: ORIGINAL RESEARCH • CASE STUDIES • REVIEW TABLE OF CONTENTS ORIGINAL RESEARCH 1 Safe Sleep Practices of Kansas Birthing Hospitals Carolyn R. Ahlers-Schmidt, Ph.D., Christy Schunn, LSCSW, Cherie Sage, M.S., Matthew Engel, MPH, Mary Benton, Ph.D. CASE STUDIES 5 Neck Trauma and Extra-tracheal Intubation Vinh K. Pham, M.D., Justin C. Sandall, D.O. 8 Strongyloides Duodenitis in an Immunosuppressed Patient with Lupus Nephritis Ramprasad Jegadeesan, M.D., Tharani Sundararajan, MBBS, Roshni Jain, MS-3, Tejashree Karnik, M.D., Zalina Ardasenov, M.D., Elena Sidorenko, M.D. 11 Arcanobacterium Brain Abscesses, Subdural Empyema, and Bacteremia Complicating Epstein-Barr Virus Mononucleosis Victoria Poplin, M.D., David S. McKinsey, M.D. REVIEW 15 Transgender Competent Provider: Identifying Transgender Health Needs, Health Disparities, and Health Coverage Sarah Houssayni, M.D., Kari Nilsen, Ph.D. 20 The Increased Vulnerability of Refugee Population to Mental Health Disorders Sameena Hameed, Asad Sadiq, MBChB, MRCPsych, Amad U. Din, M.D., MPH KANSAS JOURNAL of MEDICINE deaths attributed to SIDS had one or more factors contributing to an unsafe sleep environment.3 The American Academy of Pediatrics (AAP) recommendations for a safe infant sleeping environment delineate a number of modifi- able factors to reduce the risk of sleep-related infant deaths.4 Factors Safe Sleep Practices of Kansas Birthing include back sleep only, room-sharing without bed-sharing, use of a Hospitals firm sleep surface, keeping soft bedding and other items out of the Carolyn R. Ahlers-Schmidt, Ph.D.1, Christy Schunn, LSCSW2, crib, and avoiding infant overheating.
    [Show full text]
  • (Publication Only) Corynebacterium Spp. and Arcanobacterium Haemolyticum Identification
    R2737 Abstract (publication only) Corynebacterium spp. and Arcanobacterium haemolyticum identification. Usefulness of the Vitek 2 ANC card R. Soloaga*, N. Carrion, C. Barberis, M. Almuzara, L. Guelfand, J. Pidone, C. Vay (Buenos Aires, AR) Introduction: Corynebacterium diphtheriae and C.ulcerans may be isolated from suspected cases of classical diphtheria, cutaneous diphtheria and very rarely from other clinical infections. Non-diphtheric corynebacteria are opportunistic pathogens, especially in nosocomial setting where they have been associated with endocarditis, pulmonary infection, medical devices infections and urinary tract infection. A. haemolyticum infection manifests as exudative pharyngitis and tonsillitis accompanied by cervical lymphadenopathy and less commonly, the organism causes deep-seated infections and skin and soft-tissue infections Objective: The aim of this study was to determine the Vitek 2 ANC card (bioMèrieux, Marcy l’Etoile, France) performance for identification of the most frequently clinical relevant Corynebacterium species and Arcanobacterium haemolyticum Methods: Sixty-two unique clinical isolates (2 C. diphtheriae, 7 C. jeikeium, 10 C. amycolatum, 15 C.striatum, 12 C.urealyticum, 1 C.minutissimum, 8 C. pseudodiphtheriticum, 1 C. ulcerans and 6 Arcanobacterium haemolyticum) represented the 9 taxa included in the Vitek 2 ANC database and 6 strains represented related species not included in the database were analyzed in this study. All the strains were identified using 16S rRNA gene sequencing (16S) as the reference method. For Vitek identification, all the strains were isolated in pure culture on Columbia blood agar. After 24-48 h incubation to 35ºC in ambient air, a bacterial suspension was made in 0.45% aqueous ClNa and adjusted to a McFarland of 2.7-3.2 with Vitekk 2 Densicheck instrument (bioMérieux).The inoculated card was loaded into the Vitek 2C automated identification system according to the manufacturer´s instruction.
    [Show full text]
  • Corynebacterium Species Rarely Cause Orthopedic Infections
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Corynebacterium species rarely cause orthopedic infections Kalt, Fabian ; Schulthess, Bettina ; Sidler, Fabian ; Herren, Sebastian ; Fucentese, Sandro F ; Zingg, Patrick O ; Berli, Martin ; Zinkernagel, Annelies S ; Zbinden, Reinhard ; Achermann, Yvonne Abstract: Corynebacterium spp. are rarely considered as pathogens but data in orthopedic infections are sparse. Therefore, we asked how often Corynebacterium spp. caused an infection in a defined cohort of orthopedic patients with a positive culture. In addition, we aimed to determine the species variety and susceptibility of isolated strains in regards to potential treatment strategies. Between 2006 and 2015, we retrospectively assessed all Corynebacterium sp. bone and joint cultures from an orthopedic ward. The isolates were considered as relevant indicating an infection if the same Corynebacterium sp. was present in at least two samples. We found 97 orthopedic cases with isolation of Corynebacterium spp. (128 positive samples), mainly Corynebacterium tuberculostearicum (n=26), Corynebacterium amycolatum (n=17), Corynebacterium striatum (n=13), and Corynebacterium afermentans (n=11). Compared to a cohort of positive blood cultures, we found significantly more C. striatum and C. tuberculostearicum but no C. jeikeium cases. Only 16 cases out 66 cases (24.2%) with an available diagnostic set of at least 2 samples had an infection. Antibiotic susceptibility testing (AST) of different antibiotics showed various susceptibility results except for vancomycin and linezolid with a 100% susceptibility rate. Rates of susceptibility of corynebacteria isolated from orthopedic samples and of isolates from blood cultures were comparable. In conclusion, our study results confirmed that Corynebacterium sp.
    [Show full text]
  • Actinomycesspp & Nocardiaspp
    PLUMB’S THERAPEUTICS BRIEF h PATHOGEN PROFILE h PEER REVIEWED Actinomyces spp & Nocardia spp J. Scott Weese, DVM, DVSc, DACVIM University of Guelph Actinomyces spp and Nocardia spp are members of class Acti- Nocardia spp nobacteria, which can cause opportunistic infections in dogs, The Nocardia genus contains more than 30 saprophytic species cats, and other species. Both can cause pyogranulomatous or that are widely, if not ubiquitously, disseminated in the environ- suppurative disease that is often slowly progressing and chal- ment. Disease occurs following inoculation of the bacterium into lenging to diagnose; however, some differences in organism tissue or via inhalation. and characteristics exist (Table 1, next page). The incidence of h Nocardia spp are regionally variable, with higher rates of disease caused by either is undefined and likely low. infection in dry, dusty, and windy regions (eg, southwestern United States, parts of Australia). Actinomyces spp h Nocardiosis is classically divided into 3 clinical forms: Many different species are present, and taxonomy continues to pulmonary, disseminated (systemic), and cutaneous/ change; some species previously known as Actinomyces have subcutaneous.11-15 been reclassified in other genera, such as Arcanobacterium spp • Clinical presentations are as would be expected with pul- and Trueperella spp. Regardless, disease aspects remain monary, systemic, or cutaneous infections. Pulmonary or unchanged. Commonly found as part of the oral, GI, and genital cutaneous disease can progress to disseminated disease. microbiotas,1-3 Actinomyces spp and related genera are of lim- ited virulence unless inoculated into tissue (eg, via bites, foreign Diagnosis bodies, or trauma). Early diagnosis may be missed.
    [Show full text]
  • Corynebacterium Striatum: an Emerging Respiratory Pathogen
    Brief Original Article Corynebacterium striatum: an emerging respiratory pathogen Malini Shariff1, Aditi1, Kiran Beri1 1 Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India Abstract Introduction: Corynebacterium spp. are primarily considered normal flora and dismissed when isolated from clinical specimens. In recent years, Corynebacterium striatum has emerged as a multi-drug resistant human pathogen which can cause nosocomial outbreaks. The organism has infrequently been noted to cause respiratory infections. A retrospective study was conducted to identify the clinical and microbiological features of respiratory infection by Corynebacterium striatum. Methodology: C. striatum isolates from clinical and surveillance samples were tested for susceptibility to antimicrobials and typed by Random Amplification of Polymorphic DNA (RAPD). Clinical data was obtained through a retrospective review of records. Results: 15 isolates from clinical and surveillance samples of 11 hospitalised patients were included. The patients suffered from either an exacerbation of COPD (n = 9) or pneumonia (n = 2). The isolates were all multi-drug resistant. RAPD typing found no evidence of an outbreak/ transmission between patients. Conclusions: Corynebacterium spp. must be considered potential pathogens. Suspicious isolates should be identified to the species level since Corynebacterium striatum is often multi-drug resistant. Key words: Corynebacterium; diphtheroid; respiratory infection; MDR; RAPD. J Infect Dev Ctries 2018; 12(7):581-586. doi:10.3855/jidc.10406 (Received 28 March 2018 – Accepted 14 May 2018) Copyright © 2018 Shariff et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction approved by the Institute Ethics Committee.
    [Show full text]
  • Arcanobacterium Haemolyticum Type Strain (11018)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). Permalink https://escholarship.org/uc/item/03f632gf Journal Standards in genomic sciences, 3(2) ISSN 1944-3277 Authors Yasawong, Montri Teshima, Hazuki Lapidus, Alla et al. Publication Date 2010-09-28 DOI 10.4056/sigs.1123072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:126-135 DOI:10.4056/sigs.1123072 Complete genome sequence of Arcanobacterium T haemolyticum type strain (11018 ) Montri Yasawong1, Hazuki Teshima2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Tijana Glavina Del Rio2, Hope Tice2, Jan-Fang Cheng2, David Bruce2,3, Chris Detter2,3, Roxanne Tapia2,3, Cliff Han2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Manfred Rohde1, Johannes Sikorski6, Rüdiger Pukall6, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2, Nikos C. Kyrpides2, and Hans-Peter Klenk6* 1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: obligate parasite, human pathogen, pharyngeal lesions, skin lesions, facultative anaerobe, Actinomycetaceae, Actinobacteria, GEBA Arcanobacterium haemolyticum (ex MacLean et al.
    [Show full text]
  • MICROBIOLOGY LEGEND CYCLE 36 ORGANISM 5 Corynebacterium
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-2014/004. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 36 ORGANISM 5 Corynebacterium Corynebacteria (from the Greek words koryne, meaning club, and bacterion, meaning little rod) are gram-positive, catalase-positive, aerobic or facultatively anaerobic, generally nonmotile rods. The genus contains the species Corynebacterium diphtheriae and the nondiphtherial Corynebacteria, collectively referred to as diphtheroids. Nondiphtherial Corynebacteria, originally thought to be mainly contaminants, have increasingly over the past 2 decades been recognized as pathogenic, especially in the elderly and immunocompromised hosts. They are ubiquitous in nature and commonly colonize human skin and mucous membranes.
    [Show full text]
  • Validation in Horse Foals Challenged with the TB-Related
    bioRxiv preprint doi: https://doi.org/10.1101/292946; this version posted April 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Antibody-based vaccine for tuberculosis: validation in horse foals challenged 2 with the TB-related pathogen Rhodococcus equi 3 4 C. Cywes-Bentley1†, J. N. Rocha2†, A. I. Bordin2, M. Vinacur1, S. Rehman1, T.S. 5 Zaidi1, M. Meyer3, S. Anthony3, M. Lambert3, D. R. Vlock4, S. Giguère5, N. D. 6 Cohen2*, G. B. Pier1* 7 8 Affiliations: 9 1 Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA. 10 2College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College 11 Station, TX, USA. 12 3Mg Biologics, Ames, IA, USA 13 3ALOPEXX Vaccine LLC, Concord, MA, USA. 14 4College of Veterinary Medicine, University of Georgia, Athens, GA, USA 15 † Co-first authors 16 *To whom correspondence should be addressed: Drs. Cohen and Pier serve jointly as 17 corresponding authors: [email protected] and [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/292946; this version posted April 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract: 20 Immune correlates for protection against Mycobacterium tuberculosis (Mtb) infection 21 and other intracellular pathogens are largely undetermined. Whether there is a role for 22 antibody-mediated immunity is controversial. Rhodococcus equi is an intracellular 23 pathogen causing severe pneumonia in young horse foals, eliciting a disease with many 24 similarities to TB including intracellular residence, formation of granulomas and 25 induction of severe respiratory distress.
    [Show full text]