Technology for Large Space Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Telesat Canada Form 20-F Filed 2019-03-01
SECURITIES AND EXCHANGE COMMISSION FORM 20-F Annual and transition report of foreign private issuers pursuant to sections 13 or 15(d) Filing Date: 2019-03-01 | Period of Report: 2018-12-31 SEC Accession No. 0001615774-19-003425 (HTML Version on secdatabase.com) FILER Telesat Canada Mailing Address Business Address 1601 TELESAT COURT 1601 TELESAT COURT CIK:1465191| IRS No.: 980530817 | State of Incorp.:A6 | Fiscal Year End: 1231 OTTAWA A6 K1B 5P4 OTTAWA A6 K1B 5P4 Type: 20-F | Act: 34 | File No.: 333-159793-01 | Film No.: 19646641 613-748-0123 SIC: 4899 Communications services, nec Copyright © 2019 www.secdatabase.com. All Rights Reserved. Please Consider the Environment Before Printing This Document UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F (Mark One) REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT ☐ OF 1934 OR ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2018 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 OR SHELL COMPANY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF ☐ 1934 Date of Event Requiring This Shell Company Report For the transition period from to Commission File Number 333-159793-01 TELESAT CANADA (Exact Name of Registrant as Specified in Its Charter) Not Applicable (Translation of Registrant’s Name into English) Canada (Jurisdiction of Incorporation or Organization) 160 Elgin Street, Suite 2100, Ottawa, Ontario, Canada K2P 2P7 (Address of Principal Executive Offices) Christopher S. -
Report of Contributions
Open Source CubeSat Workshop 2019 Report of Contributions https://new.satnogs.org/e/3 Open Source Cub … / Report of Contributions An Open Source Implementation o … Contribution ID: 1 Type: Talk An Open Source Implementation of the CCSDS SLE Services in Python Monday, 14 October 2019 09:30 (20 minutes) An Open Source Implementation of the CCSDS SLE Services in Python Milenko Starcik (1), Fabian Burger (1), Artur Scholz (1, 2), Tiago Nogueira (1) (1) VisionSpace Technologies GmbH (2) LibreCube Initiative The Open Source CubeSat community is currently lacking the capability to use existing radio amateur ground-station networks to transfer live data to the end users / mission control centres. SatNOGS, the biggest network of the kind, provides services for archiving and offline distribution of telemetry data. At the moment, an operator using the SatNOGS network is not able to receive telemetry in real-time and make use of the station uplink chain, when available, for direct com- manding. We believe that the community could benefit considerably from services that provide real-time monitoring and control over a distributed ground-station network. As a first step to address the current limitations we introduce in this contribution a newfreeand open source implementation of the CCSDS Space Link Extension (SLE) services in Python. The SLE standard, used by all major space agencies, is one of the most adopted CCSDS standards and is key to enable the inter-agency utilisation of ground-station networks like the Deep Space Network. Additionally, it is supported by most, if not all, private ground-station operators. SLE services have proven reliable, and can be used even for missions, like most CubeSats, that do not adhere to the CCSDS telemetry and telecommand frame and packet formats. -
Relative Navigation, Microdischarge Plasma Thruster, and Distributed Communications Experiments on the FASTRAC Mission
SSC03-XI-04 Relative Navigation, Microdischarge Plasma Thruster, and Distributed Communications Experiments on the FASTRAC Mission G. Holt, S. Stewart, J. Mauldin, T. Campbell, P. Eckho®, H. Elmasri, B. Evans M. Garg, J. Greenbaum, M. Linford, M. Poole, E. G. Lightsey, L. L. Raja The University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics 1 University Station, C0600, Austin, TX 78712 Tel: (512)471-7593, [email protected] T. Ebinuma Surrey Space Centre, University of Surrey Guildford, Surrey GU2 7XH, UK Tel: +44 (0)1483 683882, [email protected] Abstract. Enabling technologies for nanosatellite formations will be demonstrated under the Formation Autonomy Spacecraft with Thrust, Relnav, Attitude, and Crosslink (FASTRAC) program. Two flight-ready nanosatellites will be designed, fabricated, integrated, and tested during the two year design period. Three speci¯c new and innovative technologies which will be demonstrated during the mission are Relative Navigation, Plasma Microthrusters, and Distributed Communications. A sensor set consisting of Global Positioning System (GPS) receiver, magnetometer, and MEMS Inertial Measurement Unit (IMU) will be used to determine position and coarse attitude. Using a radio crosslink, the two satellites will exchange state vector information and perform sub-meter level accuracy relative navigation. Each satellite will also contain a Microdischarge Plasma Thruster (MPT) developed at UT-Austin. This innovative device is capable of generating low-thrust, high-e±ciency propulsion at low power levels using microdischarge plasmas. The ability of the MPT to extend the life of the orbit will be determined by monitoring the orbit decay rates of the two vehicles as well as the MEMS IMU. -
Aerospace, Defense, and Government Services Mergers & Acquisitions
Aerospace, Defense, and Government Services Mergers & Acquisitions (January 1993 - April 2020) Huntington BAE Spirit Booz Allen L3Harris Precision Rolls- Airbus Boeing CACI Perspecta General Dynamics GE Honeywell Leidos SAIC Leonardo Technologies Lockheed Martin Ingalls Northrop Grumman Castparts Safran Textron Thales Raytheon Technologies Systems Aerosystems Hamilton Industries Royce Airborne tactical DHPC Technologies L3Harris airport Kopter Group PFW Aerospace to Aviolinx Raytheon Unisys Federal Airport security Hydroid radio business to Hutchinson airborne tactical security businesses Vector Launch Otis & Carrier businesses BAE Systems Dynetics businesses to Leidos Controls & Data Premiair Aviation radios business Fiber Materials Maintenance to Shareholders Linndustries Services to Valsef United Raytheon MTM Robotics Next Century Leidos Health to Distributed Energy GERAC test lab and Technologies Inventory Locator Service to Shielding Specialities Jet Aviation Vienna PK AirFinance to ettain group Night Vision business Solutions business to TRC Base2 Solutions engineering to Sopemea 2 Alestis Aerospace to CAMP Systems International Hamble aerostructure to Elbit Systems Stormscope product eAircraft to Belcan 2 GDI Simulation to MBDA Deep3 Software Apollo and Athene Collins Psibernetix ElectroMechanical Aciturri Aeronautica business to Aernnova IMX Medical line to TransDigm J&L Fiber Services to 0 Knight Point Aerospace TruTrak Flight Systems ElectroMechanical Systems to Safran 0 Pristmatic Solutions Next Generation 911 to Management -
The Future of Canada's Space Sector
The Future of Canada’s Space Sector An Engine of Innovation For Over Fifty Years September 2016 “Space is at the cutting edge of innovation.” Hon. Navdeep Bains, Minister of Innovation, Science and Economic Development Launch of Canada’s fourth recruitment campaign for Canadian Astronauts Canadian Aviation Museum -- Ottawa -- June 17, 2016 EXECUTIVE SUMMARY Canada has a 50-year history as a spacefaring nation. That history is part of what defines Canada as a globally important, advanced economy. That 50-year investment has also left a legacy of infrastructure, institutions and industry that generates significant socio-economic benefits and directly supports or enables government priorities across several departments, including National Defence, Environment & Climate Change, Fisheries & Oceans, In- digenous & Northern Affairs, Natural Resources, Transport, Public Safety and Innovation, Science & Economic De- velopment. Canada’s space sector is also a modern ecosystem of innovation that involves and inspires Canadians in government, academic institutions and private sector companies. The sector supports world-leading Canadian science, generates technological innovation and exports on a daily basis, and has been justifiably identified as an example of the kind of “innovation ecosystem” which the Innovation Agenda seeks to build and expand. It is, however, a sector that faces both significant opportunities and major challenges. Internationally, the industry is in the throes of a generational transformation that is seeing the rise of new players and whole new business models. This provides a host of new opportunities. Unfortunately, domestically, the combined forces of reduced funding and lack of investment certainty are depriving the space innovation engine of the fuel that it needs to respond to this dynamic environment and live up to its full potential. -
Using Range Vision for Telerobotic Control in Hazardous Environments
CA9900166 USING RANGE VISION FOR TELEROBOTIC CONTROL IN HAZARDOUS ENVIRONMENTS M. G. LIPSETT*, M. GREENSPAN**, W.J. BALLANTYNE*** *AECL Chalk River Laboratories **National Research Council of Canada ***Spar Aerospace Ltd. ABSTRACT This paper describes how range vision augments a telerobotic system. The robot has a manipulator arm mounted onto a mobile platform. The robot is driven by a human operator under remote control to a worksite, and then the operator uses video cameras and laser range images to perform manipulation tasks. A graphical workstation displays a three-dimensional image of the workspace to the operator, and a CAD model of the manipulator moves in this "virtual environment" while the actual manipulator moves in the real workspace. This paper gives results of field trials of a remote excavation system, and describes a remote inspection system being developed for reactor maintenance. 1. INTRODUCTION Teleoperated manipulators are used for remote handling of hazardous materials and can also be used for remote inspections, decontamination, and site remediation. These operations require skilled operators who can visualize the remote work area and keep an awareness of the working situation. Existing mobile robot systems are joystick-driven with no automatic control; the only feedback to the operator is a video view. While reliable, such systems are slow and difficult to use, and there is little sensing capability [1]. Situational awareness can be aided by range imaging, which builds a three-dimensional view of the work space on a computer monitor. This view is called a virtual environment (VE). The intent of a VE to present a view of the scene that is realistic enough for the operator to drive the robot as well as if the operator were actually looking at the machine. -
Le Bourget: a Century of Innovation
international magazine The magazine for Saft’s JUNE 2017 customers and partners #36 Le Bourget: a century of innovation ATR 42-600 Amakusa Airlines The new age of space exploration Three battery technologies that could power our future EDITORIAL IN THIS ISSUE e A i 6 9 ghislain Lescuyer, ©S © Cyrille Dupont CeO 20 The sky’s no longer the limit! ASA/JPL-Caltech 12 n ©Airbus S.A.S. 2011 Welcome to this special communications powered by Saft 200 satellites in orbit powered ©Fotolia/artemegorov edition of Saft international batteries. As mankind has evolved by Saft lithium-ion batteries, Magazine. This is the first time and innovated since the dawn known for their performance, we are dedicating an entire of flight, so too has Saft. Today long life and reliability. 16 edition to a specific sector. This Saft equips 80% of commercial The first Paris air show was ©Fotolia/belov1409/ alestraza - aerospace edition is to celebrate airliners as well as many business held in 1909, just a few years Saft’s long association with the jets and military aircraft. before Saft came into being. aviation and space industries, We’ve also been innovating We can trace our participation and especially with the Paris Air since the dawn of the Space back to at least 1959. We’re very Show. Age. Over 50 years ago, on 17th proud to exhibit at the show in the 1930s, seaplanes February 1966, our battery and we will continue to show- were used to deliver airmail launched into space powering case our technology innovations from France to South America, the Diapason 1A, a small cylin- there for years to come. -
The First Fifteen Years – a Brief History (1987-2002)
THE FIRST FIFTEEN YEARS A BRIEF HISTORY (1987-2002) OF THE CANADIAN ACADEMY OF ENGINEERING Prepared by Dr. Gordon Slemon, FCAE March 2004 Canadian Academy of Engineering Tel: (613) 235-9056 180 Elgin Street Fax: (613) 235-6861 Suite 1100 [email protected] Ottawa ON K2P 2K3 www.acad-eng-gen.ca CONTENTS Executive Summary iii Background 1 Inauguration 5 Membership 7 Financing 8 Operations 10 Mission 11 Development and Implementation 12 Issues Statements 13 Engineering Awareness 15 Relations with the Royal Society of Canada 16 Health and Safety 18 Natural Disaster Reduction 19 Nuclear Energy 20 Engineering Research 22 Engineering Education 25 Lifelong Learning 27 Competitiveness and Entrepreneurship 28 The Engineering Profession 30 Energy and Climate Change 32 Women in Engineering 33 International Linkages 34 Regional Activities 36 Conclusion 37 Former Presidents of the Academy 38 Directors of the Academy 39 ii THE FIRST FIFTEEN YEARS A Brief History (1987-2002) of the Canadian Academy of Engineering EXECUTIVE SUMMARY The Canadian Academy of Engineering was established in June 1987 coincident with the centenary celebration of engineering in Canada. Beginning with 44 Founding Fellows, the membership has grown to the planned maximum of 250 professional engineers, elected on the basis of their distinguished careers, and of their service and contributions to society, to the country and to the engineering profession. Over its brief 15-year history, the Academy has independently initiated several major studies, drawing on the expertise of its volunteer members. It has issued eight reports dealing with the engineering education, engineering research, the evolution of the engineering profession and other areas of direct importance to the nation. -
Canada's Robotic Arms
CANADA’S ROBOTIC ARMS Murtaza Syed Aqeel Introduction I picked this because it had a big impact on Canada and Canada’s economics. The Canadarm inspired many more robots that are not just in space but have helped us here on earth. Thank you for all the people who created Canadarm! Canadarm Canadarm’s specifications The Canadarm also known as Shuttle Remote Manipulator System (for short SRMS) was remote controlled by astronauts on the shuttle. It weighs 410 kg and its length is 15 m. It has 2 cameras 1 on the elbow and 1 on the wrist Who made it? The fabulous Canadarm cost 110 million dollars. The companies that made Canadarm were Spar Aerospace, it also had CAE Electronics Ltd. And DSMA Acton Ltd. The Canadarm was made on November 13, 1981. What can it do? The Canadarm can lift very heavy things, that is one reason space workers need the Canadarm. It can lift to 30,000 kg on earth and in space it can lift up to 266,000 kg in space. A couple of things Canadarm did were repairing satellites, deploying satellites, and capturing satellites. It did these and other things because it was too dangerous for astronauts to do. How is it repaired? It can be repaired in earth unlike some of the other robots Retirement The Canadarm has done 30 years of great work and is now retired and is being displayed at the Canada Aviation and space Museum in Ottawa, Ontario. it retired on July 2011. Controlling the Canadarm Chris Hadfield was the first Canadian astronaut to control the Canadarm. -
Shuttle Missions 1981-99.Pdf
1 2 Table of Contents Flight Page Flight Page 1981 STS-49 .................................................................................... 24 STS-1 ...................................................................................... 5 STS-50 .................................................................................... 25 STS-2 ...................................................................................... 5 STS-46 .................................................................................... 25 STS-47 .................................................................................... 26 1982 STS-52 .................................................................................... 26 STS-3 ...................................................................................... 5 STS-53 .................................................................................... 27 STS-4 ...................................................................................... 6 STS-5 ...................................................................................... 6 1993 1983 STS-54 .................................................................................... 27 STS-6 ...................................................................................... 7 STS-56 .................................................................................... 28 STS-7 ...................................................................................... 7 STS-55 ................................................................................... -
Canadian Engineering History: a Thumbnail Sketch
Canadian Engineering History: A Thumbnail Sketch by Andrew H. (Drew) Wilson, FCAE May 2020 Prepared at the request of the President of the Canadian Academy of Engineering Preamble Engineering can be, and has been, defined in a variety of ways. A very early definition was that it is “the art of directing the great source of power in Nature for the use and convenience of people.” Nowadays, it has to be considered as an informed activity performed by purpose-trained practitioners in regard to the design, production and maintenance of machinery, constructions, processes and devices that is being augmented constantly by experience, research, and information that extends beyond science and technology and requires some understanding of economics and business, the law, the social sciences, and politics, as well as an appreciation of the past as well as the future. This paper has been written especially for students of engineering, to introduce them to some of the past events and achievements in engineering activity in Canada. The text is relatively short and makes use of information that has already appeared in other, longer stories of Canadian engineering. For the purposes of this paper, however, some of Newfoundland and Labrador’s engineering achievements prior to 1949 have been included. The illustrations are also few in number, but a bibliography has been appended to encourage further reading. To provide some background to the events and achievements, some economic, social and political information has been included. To help accommodate its ‘thumbnail’ description, this paper omits specific references to Canadian achievements abroad, to engineering in the Armed Forces, and to some of the companies with obvious engineering connections. -
New MILSATCOM Technologies Airborne Satellite COTM (Igt) Broadband on the Move (EMS)
SATCOM For Net-Centric Warfare May 2013 MilsatMagazine New MILSATCOM Technologies Airborne Satellite COTM (iGT) Broadband On The Move (EMS) Cover image courtesy of iDirect Government Technologies MilsatMagazine Publishing Operations Silvano Payne, Publisher + Writer Hartley G. Lesser, Editorial Director Pattie Waldt, Executive Editor Jill Durfee, Sales Director, Editorial Assistant Simon Payne, Development Director Donald McGee, Production Manager Dan Makinster, Technical Advisor Published monthly by SatNews Publishers Senior Contributors 800 Siesta Way Sonoma, CA 95476 USA Tony Bardo, Hughes Phone: (707) 939-9306 Chris Forrester. Broadgate Publications Fax: (707) 838-9235 Karl Fuchs, iDirect Government Services © 2013 SatNews Publishers Bob Gough, Carrick Communications Jos Heyman, TIROS We reserve the right to edit all submitted materials to Giles Peeters, Track24 Defence meet our content guidelines, as well as for grammar or Mike Antonovich, ATEME to move articles to an alternative issue to accommodate Richard Dutchik, Genesis Networks publication space requirements or removed due to space Bert Sadtler, Boxwood Executive Search restrictions. Submission of content does not constitute acceptance of said material by SatNews Publishers. Edited materials may, or may not, be returned to author and/ or company for review prior to publication. The views expressed in SatNews Publishers’ various publications do This Issue’s Authors not necessarily reflect the views or opinions of SatNews 1st Lt. Justin Brooks, 15th Field Artillery Regiment Publishers. Tom Cox, Coolfire Solutions Hoyt Davidson, Near Earth LLC All rights reserved. Steve Eisenhart, Space Foundation Karl Fuchs, iGT All included imagery is courtesy of, and copyright to, the Dr. Rowan Gilmore, EM Solutions respective companies and/or named individuals Hartley Lesser, SatNews Publishers Wendy Lewis, SS/L Army Sgt.