<<

1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle New Physics in Astrophysical Neutrino Flavor4. Conclusion

arXiv:1506.02043, PRL115(2015)161303

Find us on Facebook, “Institute of Physics Astroparticle Physics” https://www.facebook.com/IOPAPP

Teppei Katori Queen Mary University of London CPT16, Bloomington, Indiana, June 24, 2016 Teppei Katori, Queen Mary U of London 16/06/24 1 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle New Physics in Astrophysical Neutrino Flavor4. Conclusion

arXiv:1506.02043, PRL115(2015)161303

Teppei Katori Queen Mary University of London CPT16, Bloomington, Indiana, June 24, 2016 Teppei Katori, Queen Mary U of London 16/06/24 2 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle New Physics in Astrophysical Neutrino Flavor4. Conclusion

arXiv:1506.02043, PRL115(2015)161303

Find us on Facebook, “Institute of Physics Astroparticle Physics” https://www.facebook.com/IOPAPP

Teppei Katori Queen Mary University of London CPT16, Bloomington, Indiana, June 24, 2016 Teppei Katori, Queen Mary U of London 16/06/24 3 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle New Physics in Astrophysical Neutrino Flavor4. Conclusion

arXiv:1506.02043, PRL115(2015)161303

outline 1. Lorentz violating neutrino oscillations 2. Extra-terrestrial ultra-high-energy neutrinos 3. New physics in astrophysical neutrino flavor 4. Conclusion

Teppei Katori Queen Mary University of London CPT16, Bloomington, Indiana, June 24, 2016 Teppei Katori, Queen Mary U of London 16/06/24 4 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 4. Conclusion 1. Lorentz violating

2. Extra-terrestrial ultra-high energy neutrinos

3. New physics in astrophysical neutrino flavor

4. Conclusion

Teppei Katori, Queen Mary U of London 16/06/24 5 1. LV ν-osc 2. UHE Astro-ν 2015 was 3. Flavor triangle “Year of Neutrinos”4. Conclusion

2016 Fundamental Physics - Koichiro Nishikawa (K2K and T2K) - Atsuto Suzuki (KamLAND) - Kam-Biu Luk (Daya Bay) - Yifang Wang (Daya Bay) - Art McDonald (SNO)

- Yoichiro Suzuki (Super-Kamiokande)Teppei Katori, Queen Mary U of London 16/06/24 6 - (Super-Kamiokande) 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrinos 4. Conclusion

Neutrinos in the standard model The standard model describes 6 quarks and 6 leptons and 3 types of force carriers.

Neutrinos are special because,

1. they only interact with weak nuclear force. ν µ ν µ νµ µ W Z

d Charged Current u u Neutral Current u (CC) interaction (NC) interaction “W-boson exchange” “Z-boson exchange”

2. interaction eigenstate is not Hamiltonian eigenstate (propagation eigenstate). Thus propagation of neutrinos mix their species, called neutrino oscillations.

Teppei Katori, Queen Mary U of London 16/06/24 7 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillations, natural interferometers 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

light source slits screen pattern interference ν1

ν2

For double slit experiment, if path ν1 and path ν2 have different length, they have different phase rotations and it causes interference.

Teppei Katori, Queen Mary U of London 16/05/02 8 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillations, natural interferometers 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

νµ

νµ

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

Teppei Katori, Queen Mary U of London 16/05/02 9 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillations, natural interferometers 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

Uµ1 ν ∗ νµ 1 Ue1

ν2

νµ ν2 ν1

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

If ν1 and ν2, have different mass, they have different velocity, so thus different phase rotation.

Teppei Katori, Queen Mary U of London 16/05/02 10 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillations, natural interferometers 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

νe Uµ1 ν ∗ νµ 1 Ue1 νe ν2

νe νµ νe

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

If ν1 and ν2, have different mass, they have different velocity, so thus different phase rotation.

The detection may be different flavor (neutrino oscillations).

Teppei Katori, Queen Mary U of London 16/05/02 11 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillation as a probe of new physics 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

νµ

νµ

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

Teppei Katori, Queen Mary U of London 16/05/02 12 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillation as a probe of new physics 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

Uµ1 ν ∗ νµ 1 Ue1

Interaction with ν2 new physics

νµ ν2 ν1

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

If ν1 and ν2, have different coupling with new physics field, neutrinos also oscillate. The sensitivity of “neutrino interferometer” is comparable with precise atomic/optical interferometers.

Teppei Katori, Queen Mary U of London 16/05/02 13 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Neutrino oscillation as a probe of new physics 4. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

νe Uµ1 ν ∗ νµ 1 Ue1 νe Interaction with ν2 new physics νe νµ νe

If 2 neutrino Hamiltonian eigenstates, ν1 and ν2, have different phase rotation, they cause quantum interference.

If ν1 and ν2, have different coupling with new physics field, neutrinos also oscillate. The sensitivity of “neutrino interferometer” is comparable with precise atomic/optical interferometers.

Teppei Katori, Queen Mary U of London 16/05/02 14 Kostelecký and Russel, Rev.Mod.Phys.83(2011)11, ArXiv:0801.0287v9 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 1. Summary of limits of neutrino SME coefficients 4. Conclusion

All neutrino oscillation channels were tested, there are no evidence of Lorentz violation.

Chance to see the Lorentz violation in terrestrial neutrino experiments is very small

Extra-terrestrial high-energy neutrinos!

Teppei Katori, Queen Mary U of London 16/06/24 15 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 4. Conclusion 1. Lorentz violating neutrino oscillation

2. Extra-terrestrial ultra-high energy neutrinos

3. New physics in astrophysical neutrino flavor

4. Conclusion

Teppei Katori, Queen Mary U of London 16/06/24 16 Kostelecký and Mewes, PRD69(2004)016005 1. LV ν-osc Arugüelles, INVISIBLE2015 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with neutrino oscillation 4. Conclusion

Teppei Katori, Queen Mary U of London 16/06/24 17 Kostelecký and Mewes, PRD69(2004)016005 1. LV ν-osc Arugüelles, INVISIBLE2015 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with neutrino oscillationSuper-Kamiokande IceCube-IC40 4. Conclusion

T2K INGRID

PRD91(2015)052003 PRD82(2010)112003

Quilain, CPT16

MINOS FD

MiniBooNE

PRL105(2010)151601

PLB718(2013)1303 MINOS ND

LSND Double Chooz

PRL101(2008)151601 PRD85(2012)031101(R) PRD72(2005)076004 PRD86(2013)112009

Teppei Katori, Queen Mary U of London 16/06/24 18 Kostelecký and Mewes, PRD69(2004)016005 1. LV ν-osc Arugüelles, INVISIBLE2015 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with neutrino oscillation 4. Conclusion extra galactic neutrino potential

1Mpc(~Andromeda)

TeV neutrino potential

Teppei Katori, Queen Mary1TeV U of London 16/06/24 19 Kostelecký and Mewes, PRD69(2004)016005 1. LV ν-osc Arugüelles, INVISIBLE2015 IceCube collaboration 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with neutrino oscillation 4. Conclusion extra galactic neutrino potential

1Mpc(~Andromeda) PRL111(2013)021103

TeV neutrino potential

Teppei Katori, Queen Mary1TeV U of London 16/06/24 20 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 “Ernie” 7. Conclusion 1.0 PeV “Big Bird” First observation (2013) θ = 62o 2.0 PeV - 30-2600 TeV neutrinos θ = 34o - no efficiency for up-going “Bert” 1.1 PeV θ = 23o

Teppei Katori, Queen Mary U of London 16/05/02 21 Diaz, Kostelecký, Mewes, PRD85(2013)096005;89(2014)043005 1. LV ν-osc Arugüelles, TK, Salvado,PRL115(2015)161303 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with extra-terrestrial neutrinos 4. Conclusion

Combination of longer baseline and higher energy makes extra-terrestrial neutrino to be the most sensitive source of fundamental physics.

Neutrino mixing properties of UHE neutrinos can push this limit further (~10-34). It is the most sensitive test of new physics (including Lorentz violation) with neutrinos.

New physics

Neutrino mixing UHE-ν

Teppei Katori, Queen Mary U of London 16/06/24 22 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 4. Conclusion 1. Lorentz violating neutrino oscillation

2. Extra-terrestrial ultra-high energy neutrinos

3. New physics in astrophysical neutrino flavor

4. Conclusion

Teppei Katori, Queen Mary U of London 16/06/24 23 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Standard flavour triangle diagram 4. Conclusion

There are 3 UHE neutrino production models i. pion decay dominant model, 1:2:0 -decay ii. electron neutrino dominant model, 1:0:0 π -decay iii. muon neutrino dominant model, 0:1:0 β -cooling …and 1 exotic model, µ exotic iv. tau neutrino dominant model, 0:0:1 ντ

Teppei Katori, Queen Mary U of London 16/05/02 24 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Standard flavour triangle diagram 4. Conclusion

There are 3 UHE neutrino production models i. pion decay dominant model, 1:2:0 -decay ii. electron neutrino dominant model, 1:0:0 π -decay iii. muon neutrino dominant model, 0:1:0 β -cooling …and 1 exotic model, µ exotic iv. tau neutrino dominant model, 0:0:1 ντ

Due to neutrino mixing, flavours on the earth are different

Teppei Katori, Queen Mary U of London 16/05/02 25 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc Palladino and Vissani, arXiv:1504.05238 2. UHE Astro-ν 3. Flavor triangle 3. Standard flavour triangle diagram 4. Conclusion

There are 3 UHE neutrino production models i. pion decay dominant model, 1:2:0 -decay ii. electron neutrino dominant model, 1:0:0 π -decay iii. muon neutrino dominant model, 0:1:0 β -cooling …and 1 exotic model, µ exotic iv. tau neutrino dominant model, 0:0:1 ντ

Due to neutrino mixing, flavours on the earth are different Flavour content on the earth, including errors of oscillation parameter

Teppei Katori, Queen Mary U of London 16/05/02 26 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc Bustamante et al,PRL115(2015)161302, Gonzalez-Garcia et al,arXiv:1605:08055 2. UHE Astro-ν 3. Flavor triangle 3. Standard flavour triangle diagram 4. Conclusion

There are 3 UHE neutrino production models i. pion decay dominant model, 1:2:0 ii. electron neutrino dominant model, 1:0:0 iii. muon neutrino dominant model, 0:1:0 all possible …and 1 exotic model, astrophysical models iv. tau neutrino dominant model, 0:0:1

Due to neutrino mixing, flavours on the earth are different Flavour content on the earth, including errors of oscillation parameter All possible flavour ratio are in this tiny band!

Teppei Katori, Queen Mary U of London 16/05/02 27 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Neutrino flavour ratio with new physics 4. Conclusion

Any new physics can end up in the effective Hamiltonian - neutrino mixing depends on energy 1:2:0 (pion decay) - there is strong initial flavour ratio dependency

An example Hamiltonian with new physics term (~10-26 GeV CPT odd Lorentz violation)

! m2 m2 m2 $ ! $ # ee eµ eτ & # 0 0 0 & 1 # 2* 2 2 & 1:0:0 (beta decay) heff = me m m + E ⋅# 0 0 c & 2E # µ µµ µτ & # µτ & # m2* m2* m2 & # 0 c c & " eτ µτ ττ % " µτ ττ %

0:1:0 (muon cooling)

Teppei Katori, Queen Mary U of London 16/05/02 28 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Neutrino flavour ratio with new physics 4. Conclusion

Any new physics can end up in the effective Hamiltonian - neutrino mixing depends on energy 1:2:0 (pion decay) - there is strong initial flavour ratio dependency

Flavor triangle diagram is a convenient way to show these models.

1:0:0 (beta decay)

0:1:0 (muon cooling)

Teppei Katori, Queen Mary U of London 16/05/02 29 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc IceCube,PRL115(2015)081102 2. UHE Astro-ν 3. Flavor triangle 3. Astrophysical index 4. Conclusion

We don’t observe flavour ratio with function of energy à neutrino flux model needs to be convoluted

However, flux model (astrophysical index) is highly correlated with normalization of the flux. à in this analysis, γ=2 (Φ~E-2) is used.

Teppei Katori, Queen Mary U of London 16/05/02 30 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. New physics operator 4. Conclusion

Arbitrary new physics are described in terms of effective operators � � � � � = � � � + � � � + ⋯ = � + � � + ⋯ Λ Λ - Lorentz violation - cosmic torsion - Lorentz and CPT violation - Non-Standard interaction - Violation of equivalent principle etc etc Effective Hamiltonian is the combination of mass term and new physics term 1 � ℎ = ��� + � � � = �(�)∆�(�) 2� Λ Then, equation is solved to find the neutrino mixing �→ � → ∞, � = � �

Finally, fraction of neutrino flavour β on the earth is ⨁ � ~ �→ � → ∞, � � � ��

Teppei Katori, Queen Mary U of London 16/05/02 31 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc IceCube,PRD82(2010)112003, SuperKamiokande,PRD91(2015)052003 2. UHE Astro-ν 3. Flavor triangle 4. Conclusion 3. Scale of new physics a+c·E+…

First, we need to set the scale of new physics 1 � ℎ = ��� + � � � = �(�)∆�(�) 2� Λ

There are 3 choices 1. current limits on new physics (a~10-23 GeV and c~10-27) à We use the best limits on SME from Super-Kamiokande and IceCube-40

2. lowest energy observed astrophysical neutrino(a~10-26 GeV and c~10-30) à New physics is just above current limits

3. highest energy observed astrophysical neutrino(a~10-28 GeV and c~10-34) à IceCube is barely sensitive to the new physics

Teppei Katori, Queen Mary U of London 16/05/02 32 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc Haba, Murayama, PRD63(2001)053010 2. UHE Astro-ν 3. Flavor triangle 3. Anarchy sampling 4. Conclusion

We need to scan the phase space of new physics parameter 1 � ℎ = ��� + � � � = �(�)∆�(�) 2� Λ

We follow the anarchic sampling scheme to choose the new physics model, and the model density is shown as a histogram on the triangle diagram. ! 2 4 2 dU = ds12 ∧dc13 ∧ds23 ∧dδ Large Lorentz violation à observed flavour ratio can be many option Small Lorentz violation à only tiny deviation from the standard value is possible

Teppei Katori, Queen Mary U of London 16/05/02 33 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc IceCube,PRD82(2010)112003, SuperKamiokande,PRD91(2015)052003 2. UHE Astro-ν 3. Flavor triangle 3. Flavor triangle histogram 4. Conclusion

Exotic models can make variety of current limits on new physics -23 -27 flavour ratios, but not every flavour (a~10 GeV and c~10 ) ratio is possible.

Under the current best limits on new π-decay physics from Super-K and IceCube- β-decay IC40, any flavour ratios are allowed µ-cooling

exotic ντ

Teppei Katori, Queen Mary U of London 16/05/02 34 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Flavor triangle histogram 4. Conclusion

Exotic models can make variety of ! m2 m2 m2 $ ! a a a $ flavour ratios, but not every flavour # ee eµ eτ & # ee eµ eτ & 1 2* 2 2 * ratio is possible. h = # m m m &+# a a a & eff 2E # eµ µµ µτ & # eµ µµ µτ & # m2* m2* m2 & # a* a* a & n=0 operator new physics " eτ µτ ττ % " eτ µτ ττ % 35 TeV scale 2 PeV scale (a~10-26 GeV) (a~10-28 GeV)

IceCube best fit???

Teppei Katori, Queen Mary U of London 16/05/02 35 Arugüelles, TK, Salvado, PRL115(2015)161303 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Flavor triangle histogram 4. Conclusion

Exotic models can make variety of ! m2 m2 m2 $ ! c c c $ flavour ratios, but not every flavour # ee eµ eτ & # ee eµ eτ & 1 2* 2 2 * ratio is possible. h = # m m m &+ E ⋅# c c c & eff 2E # eµ µµ µτ & # eµ µµ µτ & # m2* m2* m2 & # c* c* c & n=1 operator new physics " eτ µτ ττ % " eτ µτ ττ % 35 TeV scale 2 PeV scale (c~10-30) (c~10-34)

IceCube best fit???

The flavour ratio is the most powerful tool to Teppei Katori, Queen Mary U of London 16/05/02 36 explore any new physics within particle physics IceCube collaboration, PRL114(2015)171102, Astro.J.809:98(2015) 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. Flavor triangle by IceCube 4. Conclusion

Flavour ratio is sensitive with analysis method… 2 à very shallow χ surface from νe-dominant to ντ-dominant solutions

IceCube 2nd flavor ratio result (0.5:0.5:0.0)

IceCube 1st flavor ratio result (0.0:0.2:0.8)

Teppei Katori, Queen Mary U of London 16/05/02 37 IceCube collaboration, PRL114(2015)171102, Astro.J.809:98(2015) 1. LV ν-osc Palomares-Ruiz et al,PRD91(2015)103008 2. UHE Astro-ν 3. Flavor triangle 3. Flavor triangle by IceCube 4. Conclusion

Flavour ratio is sensitive with analysis method… 2 à very shallow χ surface from νe-dominant to ντ-dominant solutions

Flavour ratio is sensitive with flux cut off used in the analysis à We don’t see high energy shower events (=no Glashow resonance)

à Shower events are likely ντ, not νe E=[60TeV, 3PeV] E=[60TeV, 10PeV]

Teppei Katori, Queen MaryUsing U neutronof London capture to distinguish16/05/02 ντCC from38 νeCC? ArXiv:1606.06290 (paper from this week) IceCube-Gen2 collaboration, arXiv:1412.5106 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 3. IceCube-Gen2 4. Conclusion IceCube DeepCore Gen2

Bigger IceCube and denser DeepCore can push their physics

Gen2 Larger string separations to cover larger area

PINGU Smaller string separation to achieve lower energy threshold for neutrino mass hierarchy measurement

IceCube-Gen2 collaboration meeting (May 1, 2015)

PINGU The proposal will be submitted to NSF

Teppei Katori, Queen Mary U of London 16/06/24 39 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle Conclusion 4. Conclusion

Lorentz and CPT violation has been shown to occur in Planck-scale theories.

There is a world wide effort to test Lorentz violation with various state-of- the-art technologies.

MiniBooNE, MINOS, IceCube, Double Chooz, Super-Kamiokande, and T2K set stringent limits on Lorentz violation in neutrino sector in terrestrial level.

Extra-terrestrial neutrinos from IceCube are one of the most sensitive tool to test fundamental physics, such as Lorentz violation. We are working on the simultaneous fit of atmospheric and astrophysical neutrinos to find Lorentz violation from UHE neutrino sample.

Thank you for your attention! Teppei Katori, Queen Mary U of London 16/06/24 40 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 4. Conclusion

backup

Teppei Katori, Queen Mary U of London 16/06/24 41 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 2. Comment: Is there preferred frame? 4. Conclusion

As we see, all observers are related with observer’s Lorentz transformation, so there is no special “preferred” frame (all observer’s are consistent)

But there is a frame where universe looks isotropic even with a Lorentz violating vector field. You may call that is the “preferred frame”, and people often speculate the frame where CMB looks isotropic is such a frame (called “CMB frame”).

However, we are not on CMB frame (e.g., dipole term of WMAP is nonzero), so we expect anisotropy by lab experiments even CMB frame is the preferred frame.

Teppei Katori, Queen Mary U of London 16/06/24 42 Hill, Neutrino 2014 1. oscillation 2. Lorentz violation 3. IceCube 2. Neutrino astronomy 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

Direct message from the furthest celestial objects - Neutrinos are neutral distant - Neutrinos only interact with weak force source

Charged particles IceCube Gamma rays detector Neutrinos

Teppei Katori, Queen Mary U of London 16/05/02 43 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos

� + � → ∆→ � → �

�̅ (6.2���) + � → �

Teppei Katori, Queen Mary U of London 16/05/02 44 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos - Unlikely from atmospheric neutrinos

“prompt” “conventional” (charm decay) (π/K decay)

Teppei Katori, Queen Mary U of London 16/05/02 45 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos - Unlikely from atmospheric neutrinos - Sources are not known

Teppei Katori, Queen Mary U of London 16/05/02 46 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos - Unlikely from atmospheric neutrinos - Sources are not known - From both southern and northern sky Northern sky track sample with E-2 astrophysical spectrum IceCube is not 4π measurement - efficiency is not uniform - Southern sky (above) has high atmospheric muon background - Northern neutrinos (bottom) are attenuated by the earth (>100 TeV)

Teppei Katori, Queen Mary U of London 16/05/02 47 IceCube,Science.342(2013)1242856,PRL113(2014)101101:115(2015)081102 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos - Unlikely from atmospheric neutrinos - Sources are not known - From both southern and northern sky - Shower topology is dominant

Naively

- Flavor ratio of νe : νµ : ντ ~ 1 : 1 : 1 - At very high energy, σ(CC) ~ 3σ(NC) - Track : Shower ~ 1 : 3 (NT/NS ~ 0.33)

Teppei Katori, Queen Mary U of London 16/05/02 48 Palladino et al,PRL114(2015)171101 1. oscillation 2. Lorentz violation 3. IceCube 2. Astrophysical Very-High-Energy Neutrinos 4. UHE neutrinos 5. Flavor triangle 6. IceCube-Gen2 7. Conclusion

First observation (2013) - 30-2000 TeV neutrinos - Unlikely from Glashow resonance or GZK neutrinos - Unlikely from atmospheric neutrinos - Sources are not known - From both southern and northern sky - Shower topology is dominant

Precise calculation shows NT/NS ~ 0.15 – 0.3

This moment, any models are compatible with data

It is tricky to treat nτCC interaction - Naively it’s shower - High chance to make high energy muon à track

Teppei Katori, Queen Mary U of London 16/05/02 49 Diaz, Kostelecký, Mewes, PRD85(2013)096005;89(2014)043005 1. LV ν-osc 2. UHE Astro-ν 3. Flavor triangle 2. Lorentz violation with extra-terrestrial neutrinos 4. Conclusion

Combination of longer baseline and higher energy makes extra-terrestrial neutrino to be the most sensitive source of fundamental physics.

Vacuum Cherenkov radiation can limit new physics of neutrino up to 10-20

Zo UHE-ν

Vacuum Cherenkov radiation

Teppei Katori, Queen Mary U of London 16/06/24 50