With Masatoshi Koshiba

Total Page:16

File Type:pdf, Size:1020Kb

With Masatoshi Koshiba IPMU Interview with Masatoshi Koshiba Interviewer: Kunio Inoue Making every effort to win and Culture) the IMB project the competition in the US suddenly emerged. Inoue: Professor Koshiba, It had a much larger budget, you started neutrino research much larger water volume, using Kamiokande, from and PMTs (photomultiplier which subsequently the tubes) of comparable photon Super-Kamiokande and sensitivity to ours. I thought KamLAND, and then K2K and that we would lose the T2K experiments evolved. I competition, and spending think that Japan now takes tax payers’ money on an a leading role in the world in experiment which we were the field of neutrino research. bound to lose would not be I would like to hear about justified. My conclusion, after how you started the neutrino careful thinking, was that I research using Kamiokande, would not even try to request and how Kamiokande more money, but rather was able to achieve such improve the sensitivity of each developments. PMT by orders of magnitude. Koshiba: These are difficult I approached the president questions, and not easy to of Hamamatsu Television (now answer. Kamiokande was Hamamatsu Photonics). I had initially designed for the known him for the previous 10 purpose of searching for years or so because my group proton decays. But when our was developing new PMTs for proposal was about to be an electron-positron collider accepted by the Monbusho experiment in Germany. (Ministry of Education, Science, Through this experience, I knew that the company would be willing to become Masatoshi Koshiba is Honorary Professor Emeritus of the involved in new developments. University of Tokyo. He was I tried to talk him into the awarded the 2002 Nobel Prize in Physics jointly with idea of developing a large Raymond Davis Jr for pioneering . 20” diameter PMT. He was contributions to astrophysics, in particular, the detection of hesitant at first. The chief cosmic neutrinos. Among many engineer accompanying him other distinguished awards he received, particularly noteworthy was opposed to the idea, was the 1997 Order of Cultural saying“, That’s out of the Merit conferred by The Emperor of Japan in person. question, sir!” 16 IPMU News No. 2 June 2008 It took more than three Our experiment would hours to persuade him to go have been like buying a ahead. I assigned Teruhiro lottery using tax payer's Suda, Atsuto Suzuki, and money if it had only searched Katsushi Arisaka[★1], from for proton decay, as I said my group for the project. earlier. So I thought, since we Subsequent development could see these low-energy went well and we got good electrons cleanly, we should PMTs. It was the spring of try to reduce the background 1983. by orders of We immediately began magnitude installation of those PMTs, and try to see and more or less completed electrons below the work by August. Then 10 MeV cleanly. If we we filled the water tank and could achieve that, we would started to take data from be able to measure electrons September. We found the scattered by solar neutrinos. data to be of unexpectedly This way we ought to have good quality. In other words, been able to make real-time we could see a beautiful observations of the arrival energy spectrum of decay time, incoming direction, and electrons from muons which energy spectrum of solar entered the 3,000-ton water neutrinos. tank and stopped. We could clearly see the spectrum down Giving chances to capable to as low as 12 MeV. Below young people that, however, the background But, after a simple increased drastically and calculation, it was obvious buried the signal completely. that we could have collected at most only one event per week, even if we had ★1: At that time the late Professor 1,000-ton fiducial mass. Teruhiro Suda, Kobe University, was an associate professor at ICRR, the University of Tokyo; Professor Atsuto Suzuki, now Director General Interview of KEK, was an assistant professor Kunio Inoue is the Director at the University of Tokyo; and of the Research Center for Professor Katsushi Arisaka, UCLA, Neutrino Science, Tohoku was a graduate student of the University, and a principal University of Tokyo. investigator of IPMU. 17 The question was, could we experiments were low-profile money, but it was not realistic PMTs with high sensitivity. further reduce the background work, but had to continue to request additional funding I continued to explain that of several events per second. for many years. Therefore, it from the Monbusho. We we wanted to pursue the This required purification of was important to attract the had to look around for other possibility of an astronomical the water. So I appointed local people’s attention to sources of money. observation of solar neutrinos Atsuto Suzuki to take charge the project in order for it to Also at that time, there by observing electrons. My of a project to produce“ the operate smoothly. So, I took were quite a few objections to first proposal was to invite cleanest water in the world”. “Kamioka” as the first part of the upgrade plan amongst the collaborators who could bring I was pleasantly surprised the experiment name hoping collaborators, although the TDCs, associated electronics, when he, completely new to that people would feel closer group was still small. and some other resources. this business, made numerous to the project. Then, I added Inoue: Were the objections Mann[★2] and his group from investigations and succeeded “NDE” as an acronym for from within the group? University of Pennsylvania in producing the cleanest “Nucleon Decay Experiment”. Koshiba: Yes, from within responded to this proposal water in the world in less than As you know, since the group. If we wanted to and said they wanted to take a year. Kamiokande had been detect solar neutrinos, we had part. I am often invited to lecture producing physics results, to install a 4π anti-counter, as I stressed that this was just at business executives’ mostly concerning neutrinos, I told you. To do this, we had to show feasibility because meetings in Japan. I mention people worldwide tend to remove the PMTs in the even if we succeeded that you should boldly appoint to think“ NDE” stands bottom part of the detector, in making astrophysical capable people to responsible for“ Neutrino Detection which we had worked so observations of solar positions, even if you think Experiment”. I don’t mind. hard to install, and had to re- neutrinos with Kamiokande, they may be too young. Such Either way is OK with me. install them at a higher level. the facility was not big people are sure to make great We had to waste a lot of time enough. To go beyond the progress. I tell them that I have Toward solar neutrino and lose a significant part of feasibility experiment and seen several such cases in the observations the fiducial mass. This meant into real observation of solar Kamiokande experiment, and Anyway, we needed more a loss of the fiducial mass for neutrinos with this method, a one was the case of Atsuto money. In order to detect a proton decay search, so the considerably bigger detector Suzuki. solar neutrinos using this objections were rather strong. would be needed. So my One of the key elements for method, we had to select one But I made a decision to second proposal was to invite the success of Kamiokande event or so per week out of go ahead as a group leader. collaborators to build Super- was that I seldom said“ do the background. We had to Now I had to look around Kamiokande, containing that” or“ do this” to the reduce the background by for the sources for TDCs and 50,000-tons of water. young members of my orders of magnitude. the funds for installing the group. I tried to create a To do this, we first had to anti-counter. About three Supernova neutrinos situation where each member install an anti-counter having months later, in January detected! understood what they had to 4π solid-angle coverage 1984, an international Inoue: I’m impressed that you do. I think this is an important and capable of surrounding conference on baryon number had a master plan from very point for making progress in a the entire detector. The non-conservation, called early on. project. other thing we needed was “ICOBAN”, was held in Park Koshiba: Yes, it was January Inoue: Do you think a secret upgraded electronics. At that City, Utah. I attended this 1984. But, there was no key to Kamiokande's success time, lack of money meant conference and presented response to the second was giving chances to young that we had only digitizers the preliminary results from proposal. I made these two people and letting them to record signal pulse height Kamiokande, and at the same proposals in the first week having big responsibilities? (ADCs). We had to have time presented two proposals. Koshiba: I think so. The other digitizers capable of recording First I explained that we thing was choosing the name signal timing (TDCs) to make could make a clean detection ★2: Alfred Mann, now Professor Emeritus at University of “Kamiokande.” Earlier proton more precise measurements. of electrons down to as low Pennsylvania, was a professor there decay and solar neutrino These upgrades required as 10 MeV because of new at the time. 18 IPMU News No. 2 June 2008 Inside Kamiokande. The detector was located 1,000m underground in the Kamioka Mine. The cylindrical detector tank, 15.6m in diameter and 16m in height, contained 3,000 tons of pure water.
Recommended publications
  • Atsuto Suzuki
    Atsuto Suzuki (KEK : High Energy Accelerator Research Organization) 1 2 1. Quark Flavor Project 2. Lepton Flavor Project 3. Energy Frontier Project 4. Non-Accelerator Project 5. Summary 3 In 2008 4 Quest for International Linear Collider Quest for Unifying Birth-Evolution (ILC) Matter and Force of Universe Scientific Activities Beyond Standard Physics Lepton CP Asymmetry Technology Innovations Power-Upgrade Talented Human Resources SuperKEKB J-PARC KEK-B Quark CP Asymmetry LHC [Origin of Matter] nt Quest for Neutrinos nm Quest for 6 Quarks ne [Origin of Force] Higgs Particle [Origin of Mass] e-/e+ Collider KEKB -> SuperKEKB SCC RF(HER) Belle Detector 8 GeV e- 3.5 GeV e+ 1036 SuperKEKB Ares RF ) 1 - 50 times higher s cavity 2 - luminosity e+ source Peak Luminosity Luminosity (cm Peak TRISTAN 6 15 countries, 400 collaborators # of papers : 315 # of citations : 13,309 CPV: caused by a single phase of CKM matrix7 Standard Model X(3872) Z(4430) SM quar k lept on Bgdg transition BgD*tn Upgrade KEKB to SuperKEKB with x 50 performance 8 KEKB upgrade to SuperKEKB Colliding bunches IR with by*=0.3mm SC final focus system e-(2.6A) SuperKEKB Low emittance lattice Add RF systems for e+(3.6A) higher beam current Damping ring for low emittance positron injection Positron NEG pumps capture section LER beampipe to suppress photoelectron instability Beam SR Target: L = 8x1035/cm2/s 9 Belle II Detector (in comparison with Belle) EKLM Module 0 @ITEP Aerogel- RICH Bell SVD: 4 DSSD lyrs g 2 DEPFET lyrs + 4 DSSD lyrs CDC: small cell, long lever arm Bell II ACC+TOF g TOP+A-RICH ECL: waveform sampling (+pure CsI for end-caps) KLM: RPC g Scintillator +MPPC(end-caps) Inconsistency in unitarity triangle? B -> fKs J-PARC Facility (KEK/JAEA) Linac 3 GeV RCS Neutrino Beams (to Kamioka) Materials and Life Experimental Facility (n, m) Hadron Exp.
    [Show full text]
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • 2015 Annual Report
    2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher.
    [Show full text]
  • HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
    For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program
    [Show full text]
  • Neutrinos and Beyond — Opening a New Era of Cosmic-Ray Research
    ADVERTISEMENT FEATURE THE UNIVERSITY OF TOKYO Neutrinos and beyond — Opening a new era of cosmic-ray research Takaaki Kajita, a recipient of the 2015 that neutrinos are massless. These discov- Nobel Prize in Physics, and other re- eries, which resulted in Kajita’s 2015 Nobel searchers at the University of Tokyo’s Prize in Physics, were made a team led by Institute for Cosmic Ray Research (ICRR) him in 1998. have been exploring new realms in par- Kajita acknowledged his success owed ticle physics research. Kajita’s work on a lot to the strong support he received neutrinos and related research at ICRR from two mentors and former supervisors is leading the world in this field. — Masatoshi Koshiba and Yoji Totsuka. Koshiba was awarded the 2002 Nobel Prize The path to a Nobel prize in Physics for detecting neutrinos pro- Particle physics and astrophysics are duced in supernovae using Kamiokande, among the most active research fields at the predecessor of Super-Kamiokande. the University of Tokyo, and its Institute for Totsuka led the Super-Kamiokande proj- Cosmic Ray Research (ICRR) is leading the ect as Koshiba’s successor. Totsuka’s con- world with explorations in these areas. ICRR tribution was so great that many believe is best known for its research on neutrinos he would have shared the Nobel Prize with using the world’s largest underground neu- Kajita if he were alive. trino detector, Super-Kamiokande. The de- Kajita’s award-winning work dates tector is located in a mine in central Japan back to 1986 when he earned his PhD for and is filled with 50,000 tons of pure water.
    [Show full text]
  • Final Report
    Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics Committee on Elementary Particle Physics in the 21st Century, National Research Council ISBN: 0-309-66039-4, 176 pages, 7 x 10, (2006) This free PDF was downloaded from: http://www.nap.edu/catalog/11641.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics http://www.nap.edu/catalog/11641.html REVEALING THE HIDDEN NATURE OF SPACE AND TIME Charting the Course for Elementary Particle Physics Committee on Elementary Particle Physics in the 21st Century Board on Physics and Astronomy Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Bright Prospects for Tevatron Run II
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 Bright prospects for Tevatron Run II JLAB Virginia laboratory delivers terahertz light p6 ^^^J Modular and expandable power supplies WÊ H Communications via TCP/IP içert. n_.___910S.CAEN '^^^*aBOKS^^^^ • ÊÊÊ WÊÊÊSêSê É TÏSjj à OPC Server to ease integration in DCS J Directly interfaced to JCOP Framework p " j^pj ^ ^^^^ Wa9neticFie,dand^ ^^HTJHj^^^^^^^^^^^^^^^^^^^^^^E' ' tfHl far IM Éfefi-*il * CAEN: your largest choice of HV & LV )^ H MULTICHANNEL POWER SUPPLIES CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editors James Gillies and Christine Sutton CERN, 1211 Geneva 23, Switzerland Email [email protected] Fax+41 (22) 782 1906 Web cerncourier.com COURIER Advisory Board R Landua (Chairman), F Close, E Lillest0l, VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 H Hoffmann, C Johnson, K Potter, P Sphicas Laboratory correspondents: Argonne National Laboratory (US): D Ayres Brookhaven, National Laboratory (US): PYamin Cornell University (US): D G Cassel DESY Laboratory (Germany): Ilka Flegel, P Waloschek Fermi National Accelerator Laboratory (US): Judy Jackson GSI Darmstadt (Germany): G Siegert INFN
    [Show full text]
  • A Half-Century with Solar Neutrinos*
    REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Nobel Lecture: A half-century with solar neutrinos* Raymond Davis, Jr. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA (Published 8 August 2003) Neutrinos are neutral, nearly massless particles that neutrino physics was a field that was wide open to ex- move at nearly the speed of light and easily pass through ploration: ‘‘Not everyone would be willing to say that he matter. Wolfgang Pauli (1945 Nobel Laureate in Physics) believes in the existence of the neutrino, but it is safe to postulated the existence of the neutrino in 1930 as a way say that there is hardly one of us who is not served by of carrying away missing energy, momentum, and spin in the neutrino hypothesis as an aid in thinking about the beta decay. In 1933, Enrico Fermi (1938 Nobel Laureate beta-decay hypothesis.’’ Neutrinos also turned out to be in Physics) named the neutrino (‘‘little neutral one’’ in suitable for applying my background in physical chemis- Italian) and incorporated it into his theory of beta decay. try. So, how lucky I was to land at Brookhaven, where I The Sun derives its energy from fusion reactions in was encouraged to do exactly what I wanted and get paid for it! Crane had quite an extensive discussion on which hydrogen is transformed into helium. Every time the use of recoil experiments to study neutrinos. I imme- four protons are turned into a helium nucleus, two neu- diately became interested in such experiments (Fig.
    [Show full text]
  • Submitted Proposal
    Trimmed version of the CNAP PFC proposal to the NSF (page numbers refer to those in the upper right-hand corners) 1 NSF coverpage 2 Project Summary 3 Executive Summary 6 Prior Accomplishments 11 Major Activities Introduction 13 MA1: Neutrino Phenomenology 21 MA2: Neutrino Technology 31 MA3: Neutrino Frontier 41 Education, Development and Outreach 44 Shared Facilities 47 Collaboration with other sectors 49 International Collaboration 50 Seed Funding and Emerging Areas 51 Management 55 Institutional and Other Commitments 56 NSF Summary Table 57 References 64 Abbreviated Biographical Information 73 Center Budget Justification 81 Letter from NC Museum of Natural Sciences 82 List of Supporting Letters 1 COVER SHEET FOR PROPOSAL TO THE NATIONAL SCIENCE FOUNDATION PROGRAM ANNOUNCEMENT/SOLICITATION NO./CLOSING DATE/if not in response to a program announcement/solicitation enter NSF 08-1 FOR NSF USE ONLY NSF 07-567 01/30/08 NSF PROPOSAL NUMBER FOR CONSIDERATION BY NSF ORGANIZATION UNIT(S) (Indicate the most specific unit known, i.e. program, division, etc.) PHY - PHYSICS FRONTIER CENTER DATE RECEIVED NUMBER OF COPIES DIVISION ASSIGNED FUND CODE DUNS# (Data Universal Numbering System) FILE LOCATION 003137015 EMPLOYER IDENTIFICATION NUMBER (EIN) OR SHOW PREVIOUS AWARD NO. IF THIS IS IS THIS PROPOSAL BEING SUBMITTED TO ANOTHER FEDERAL TAXPAYER IDENTIFICATION NUMBER (TIN) A RENEWAL AGENCY? YES NO IF YES, LIST ACRONYM(S) AN ACCOMPLISHMENT-BASED RENEWAL 546001805 NAME OF ORGANIZATION TO WHICH AWARD SHOULD BE MADE ADDRESS OF AWARDEE ORGANIZATION, INCLUDING
    [Show full text]
  • Panel Discussion on the Nobel Prize in Physics 2015 Tommy Ohlsson Motivation for the Nobel Prize in Physics 2015
    KTH ROYAL INSTITUTE OF TECHNOLOGY Panel Discussion on the Nobel Prize in Physics 2015 Tommy Ohlsson Motivation for the Nobel Prize in Physics 2015 The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass" Takaaki Kajita Arthur B. McDonald (Super-Kamiokande) (SNO) Motivation for the Nobel Prize in Physics 2015 The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass" Ed Kearns Takaaki Kajita Arthur B. McDonald Dave Wark (Super-Kamiokande) (Super-Kamiokande) (SNO) (SNO) Super-Kamiokande (in Japan) In June 1998, the Super-Kamiokande collaboration presented its first results of measurements of atmospheric neutrinos that give evidence for neutrino oscillations (i.e. quantum mechanical effects over distances of thousands of kilometers). This result is the first solid evidence for physics beyond the Standard Model of particle physics. The atmospheric neutrino analysis of the Super-Kamiokande collaboration was led by Takaaki Kajita. SNO (in Canada) In April 2002, the SNO collaboration presented the first direct measurement of the total flux of all active boron-8 neutrinos arriving from the Sun, which provided additional evidence for neutrino flavor transitions. The SNO collaboration was led by Art McDonald. ) -1 8 SNO SNO s q q -2 7 ES CC cm 6 6 (10 o 5 µ q SNO 4 qNC 3 qSSM 2 1 0 0123456 6 -2 -1 qe (10 cm s ) Other neutrino oscillation experiments • KamLAND • first results on anti-electron neutrino flux from distant nuclear reactors • demonstrated disappearance of anti-electron neutrinos and showed that the LMA solution is the only remaining solar neu.
    [Show full text]
  • Research in Kamioka and Kakenhi Takaaki Kajita Director of Institute for Cosmic Ray Research (ICRR) the University of Tokyo Rese
    Research in Kamioka and Kakenhi Takaaki Kajita Director of Institute for Cosmic Ray Research (ICRR) The University of Tokyo Research Theme Implemented in FY2017: First Detection of Gravitational Waves Using Cryogenic Laser Interferometer (Grant-in-Aid for Specially Promoted Research) I have conducted research underground Kamioka, Gifu Prefecture, since I was a graduate student. The first experiment I participated in was the Kamioka Nucleon Decay Experiment (Kamiokande). The experiment was initially proposed by Professor Masatoshi Koshiba, who was my thesis advisor, to search for proton decay. Professor Koshiba collaborated with a company to develop an unprecedentedly large 50-centimeter diameter photomultiplier tube (PMT) for the Kamiokande experiment. The PMT served a very important role in supernova neutrino observations that verified the supernova explosion mechanism and solar neutrino observations that confirmed the so-called solar neutrino problem. It is well known that, due to these achievements, Professor Koshiba received the Nobel Prize in physics in 2002. It is common for a large apparatus such as this to be realized by submitting a budget request from a host institute after long, vigorous discussions in relevant researcher communities. In this case, however, the enthusiasm of the relevant researchers in view of the importance of Kamiokande experiments made it possible to realize the experiment quickly with funds from various sources. Kamiokande initially materialized through collaboration with the University of Tokyo’s School of Science, to which Professor Koshiba belonged, the former National Laboratory for High Energy Physics (KEK), and the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. Although I was only a graduate student at that time and knew nothing about budgets, all of us participating in the effort recognized that people thought that this experiment was very important and endeavored to realize it as soon as possible.
    [Show full text]