Energy Technology Perspectives 2 O
Total Page:16
File Type:pdf, Size:1020Kb
INTERNATIONAL ENE R G Y A GENCY ENERGY 2 o TECHNOLOGY o PERSpeCTIVES 8 In support of the G8 Plan of Action Please note that Scenarios & this PDF is subject to specific restrictions that Strategies limit its use and distribution. The terms and conditions are available online at to 2050 www.iea.org/Textbase/ about/copyright.asp ENERGY 2 o TECHNOLOGY o PERSPECTIVES 8 Scenarios & Strategies to 2050 The world needs ever increasing energy supplies to sustain economic growth and development. But energy resources are under pressure and CO2 emissions from today’s energy use already threaten our climate. What options do we have for switching to a cleaner and more efficient energy future? How much will it cost? And what policies do we need? This second edition of Energy Technology Perspectives addresses these questions, drawing on the renowned expertise of the International Energy Agency and its energy technology network. This publication responds to the G8 call on the IEA to provide guidance for decision makers on how to bridge the gap between what is happening and what needs to be done in order to build a clean, clever and competitive energy future. The IEA analysis demonstrates that a more sustainable energy future is within our reach, and that technology is the key. Increased energy efficiency, CO2 capture and storage, renewables, and nuclear power will all be important. We must act now if we are to unlock the potential of current and emerging technologies and reduce the dependency on fossil fuels with its consequent effects on energy security and the environment. This innovative work demonstrates how energy technologies can make a difference in an ambitious series of global scenarios to 2050. The study contains technology road maps for all key energy sectors, including electricity generation, buildings, industry and transport. Energy Technology Perspectives 2008 provides detailed technology and policy insights to help focus the discussion and debate in energy circles. (61 2008 02 1 P1) 978-92-64-04142-4 €100 -:HSTCQE=UYVYWY: INTERNATIONAL ENERGY AGENCY ENERGY 2 o TECHNOLOGY o PERSPECTIVES 8 In support of the G8 Plan of Action Scenarios & Strategies to 2050 INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) is an autonomous body which was established in November 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. It carries out a comprehensive programme of energy co-operation among twenty-seven of the OECD thirty member countries. The basic aims of the IEA are: n To maintain and improve systems for coping with oil supply disruptions. n To promote rational energy policies in a global context through co-operative relations with non-member countries, industry and inter national organisations. n To operate a permanent information system on the international oil market. n To improve the world’s energy supply and demand structure by developing alternative energy sources and increasing the effi ciency of energy use. n To promote international collaboration on energy technology. n To assist in the integration of environmental and energy policies. The IEA member countries are: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States. Poland is expected to become a member in 2008. The European Commission also participates in the work of the IEA. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of thirty democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States. The European Commission takes part in the work of the OECD. © OECD/IEA, 2008 International Energy Agency (IEA), Head of Communication and Information Offi ce, 9 rue de la Fédération, 75739 Paris Cedex 15, France. Please note that this publication is subject to specifi c restrictions that limit its use and distribution. The terms and conditions are available online at http://www.iea.org/Textbase/about/copyright.asp 3 FOREWORD Towards an energy technology revolution The world’s current energy prospects are – put simply – unsustainable. Despite all the talk about climate change, in recent years energy demand has continued to increase and global CO2 emissions along with it. At the same time importing countries are increasingly concerned about energy security even as oil, gas and coal prices reach record highs. The G8 and IEA energy ministers asked the IEA to identify and advise on scenarios for a clean, clever and competitive energy future. In response, the IEA has delivered a number of publications. This year’s edition of Energy Technology Perspectives 2008 builds on the Energy Technology Perspectives 2006 and the World Energy Outlook 2007. This new study revises our estimates of what would need to be done to return CO2 emissions to current levels by 2050 and, for the first time, details what could be done to reduce them by 50% in that same timeframe. These objectives cannot be reached without unprecedented technological change and deployment, in all aspects of energy production and use. This study identifies the technology challenges that must be met to make the transition. And it evaluates the scale of the practical change needed to achieve that outcome. The change needed to achieve the aims of either long-term scenario is daunting, amounting to nothing less than an energy revolution. Yet even the most stringent goal can be realised, with sufficient worldwide commitment. But do the commitment and will genuinely exist? Attaining either outcome would require a radical and fundamental change in our current energy systems over a period of only forty years. To halve today’s emission levels would require additional investments of the order of USD 45 trillion. Although this is a large number in absolute terms, it is small relative to the expected growth in global economic activity over the next forty years - and small relative to the cost of not taking action. It is reassuring to know that human ingenuity can rise to this challenge. Existing technology – primarily energy efficiency – is an obvious first step, but it is ultimately new technologies that hold promise of economic opportunity and benefit for all the world’s countries – and a strong basis for common action toward common objectives. The International Energy Agency plays a key role in promoting technology development and uptake though its network of Implementing Agreements. We hope this analysis will stimulate even more international technology collaboration both within the IEA framework and outside it. Extensive RD&D, deployment and 4 FOREWORD market development will be needed. Policy levers must be better understood to put in place the long-term incentives that will encourage industry to take decisions to reach the outcomes we seek. And the market needs to ensure the framework conditions to stimulate innovation and maximise the impact we can achieve with scarce global resources. We look forward to working with governments and industry in realising the vision presented in this document. Nobuo Tanaka Executive Director 5 ACKNOWLEDGEMENTS This publication was prepared by the International Energy Agency’s Office of Energy Technology and R&D (ETO), in close association with the Economic Analysis Division (EAD) and the Office of Long-term Co-operation and Policy Analysis (LTO). Neil Hirst, Director of the ETO, provided invaluable leadership and inspiration throughout the project. Robert Dixon, Head of the Energy Technology Policy Division until October 2007 and Peter Taylor, Acting Head of the Energy Technology Policy Division from November 2007, offered important guidance and input. Dolf Gielen was the project leader and had overall responsibility for the design and development of the study. The other main authors were Kamel Bennaceur, Jeppe Bjerg, Pierpaolo Cazzola, Hugo Chandler, Roger Dargaville, Paolo Frankl, Lew Fulton, Debra Justus, Tom Kerr, Steven Lee, Emi Mizuno, Cédric Philibert, Jacek Podkanski, Ralph Sims, Cecilia Tam, Michael Taylor and Peter Taylor. Stan Gordelier and Pal Kovacs of the OECD Nuclear Energy Agency wrote the chapter on nuclear power generation. A number of consultants have contributed to different parts of the publication: Niclas Mattsson (Chalmers University of Technology, Sweden) and Uwe Remme (IER University Stuttgart, Germany) helped in the Energy Technology Perspectives model analysis. John Newman (France) contributed to the sector analysis and the industry chapter. Gillian Balitrand and Simone Brinkmann helped