Guidelines for Using Perchloric Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Storage Cabinets
Storage cabinets Incompatible chemicals must be kept separately to reduce the risk of mixing in case of accidental breakage or response to an emergency within the laboratory. (A starting point is to check the Safety Data Sheet for hazard and storage requirements.) Containers must be kept tightly closed and stored in cabinets which are suitable for the chemical. It is important to check materials which have a shelf life and safely dispose of before the date expires, and generally check the label to ensure it is still suitable and provides the necessary safety information. The condition of the cabinets needs to be checked to ensure that they are providing adequate containment of the materials being stored. Ensure spill trays are used which are capable of holding 110% volume of the largest container being stored in the tray. There may be occasions where the quantities being stored are very small and secondary containment of the chemicals within a cabinet provided would be deemed as providing adequate separation. The table below provides guidance on the type of materials being stored and the type of cabinet which is suitable for that material. This is not a definitive list and does not include ‘Highly Toxic’ materials. Separate guidance is in development. Hazard Group Type of cabinet Safety Sign and suggested Other information Max allowed (where wording applicable) Flammable Liquids Metal flammable storage Flammable liquids must 50 litres of highly flammable cabinet to BS EN 14470- never be stored in a liquid stored in any one E.g. alcohols, toluene, 1:2004, offering minimum refrigerator or freezer laboratory. -
Treating Irrigation Systems with Chlorine 1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. CIR1039 Treating Irrigation Systems with Chlorine 1 Kati W. Migliaccio, Brian Boman and Gary A. Clark2 Introduction Irrigation systems can become partially or completely clogged from biological growths of bacteria or algae which are often present in surface water and ground water. Bacteria and algae use chemical elements such as nitrogen, phosphorus, sulfur, or iron as nutrient sources to grow and develop (Figures 1 and 2) (Pitts et al., 2003). Thus, irrigation systems that also receive nutrients (such as natural background concentrations in the water or from fertigation) may experience greater rates of clogging. While all irrigation systems should have some Figure 1. Irrigation emitter clogged with algal growth. type of filtration system, this alone cannot effectively Credits: Brian Boman UF/IFAS remove microorganisms. Microorganism growth can result in clogged pipes, fittings, and emission devices of the chlorine chemical must be used to provide an (sprinklers, drippers, spray jets, etc.), decreasing effective water treatment program without damaging water application amounts and reducing application the irrigation system or the agricultural crop. uniformity and efficiency. The results of these are This publication provides a guide for using generally reduced agriculture productivity. A chlorine to treat inhibiting microorganism buildup in chemical method for removing microbial growth is irrigation systems. chlorination. Proper injection methods and amounts 1. This document is CIR1039, one of a series of the Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date July 1992. -
Writing Total and Net Ionic Equations
WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3. -
186 SESSION LAWS [Chap
186 SESSION LAWS [Chap. Sec. 2. This act shall take effect and be in force from and after its passage. Approved April 13, 1925. CHAPTER 187—S. F. No. 984. An act to safeguard the distribution and sale of certain danger- ous caustic or corrosive acids, alkalis, and other substances. Be it enacted by the Legislature of the State of Minnesota: Section 1. Definitions.—That in this act, unless the context or subject-matter otherwise requires, A. The term "dangerous caustic or corrosive substance" means each and all of the acids, alkalis, and substances named below: (a) Hydrochloric acid and any preparation containing free or chemi- cally unneutralized hydrochloric acid (HC1) in a concentration of ten per centum or more; (b) Sulphuric acid and any preparation containing free or chemically unneulralized sulphuric acid (H2SO4) in a concentration of ten per centum or more; (c) Nitric acid or any preparation containing free or chemically unneutralized nitric acid (HNO3) in a concentration of five per centum or more; (d) Carbolic acid (C6H5OH), otherwise known as phenol, and any preparation containing carbolic acid in a concentration of five per centum or more; (e) Oxalic acid and any preparation containing free or chemically unneutralized oxalic acid (H2C2O4) in a con- centration of ten per centum or more; (f) Any salt of oxalic acid and any preparation containing any such salt in a concentration of ten per centum or more; (g) Acetic acid or any preparation con- taining free or chemically unneutralized acetic acid (HC2H3O2) in a concentration of -
United States Patent Office Patented Sept
/ w 3,466,192 United States Patent Office Patented Sept. 9, 1969 1. 2 Typical examples of aqueous oxidizing acid system 3,466,192 CORROSION PREVENTION PROCESS which contain an agent from the class consisting of nitrate George S. Gardner, Elkins Park, Pa., assignor to Amchem ion, ferric ion and hydrogen peroxide, and which are - Products, Inc., Ambler, Pa., a corporation of Delaware suitable for use in accordance with the process of this No Drawing. Filed Jan. 23, 1967, Ser. No. 610,788 invention include: Int, Cl, B08b. 17/00 Nitric acid. - ". U.S. C. 134-3 4 Claims Nitric acid-hydrochloric acid. itric acid--sulfuric acid. Nitric acid, sulfuric acid--ferric sulfate. ABSTRACT OF THE DISCLOSURE 10 Nitric acid--hydrofluoric acid. Oxidizing acid attack on basis metal surfaces is re Hydrochloric acid--ferric chloride. duced by use of an oxidizing acid solution containing Hydrochloric acid, ferric chloride--citric acid. nitrate, ferric ion or hydrogen peroxide along with solu Sulfuric acid--ferric sulfate. ble methylol thiourea compounds in the acid solution. Acetic acid--ferric nitrate. Copper ion is added to enhance corrosion prevention by 15 Glycolic and formic acids--ferric nitrate. the acid solutions. Hydrogen peroxide and hydrofluoric acid. Hydrogen peroxide, hydrochloric acid and acetic or nitric acids. The present invention relates to a method of inhibiting the corrosion of metal surfaces and more particularly is 20 The concentration of the respective components in each concerned with the utilization of inhibited oxidizing acid of these examples of oxidizing acid systems will vary systems for treating metal surfaces. depending upon the type of metal being treated and the It is known in the art that oxidizing acid systems, temperature of treatment as is well known to those skilled while capable of producing the desired treatment of metal in the art of pickling and cleaning of metal surfaces. -
N-BUTYL ALCOHOL
Right to Know Hazardous Substance Fact Sheet Common Name: n-BUTYL ALCOHOL Synonyms: Propyl Carbinol; n-Butanol CAS Number: 71-36-3 Chemical Name: 1-Butanol RTK Substance Number: 1330 Date: November 1998 Revision: January 2008 DOT Number: UN 1120 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE n-Butyl Alcohol is a colorless liquid with a strong, sweet Hazard Summary alcohol odor. It is used as a solvent for fats, waxes, shellacs, Hazard Rating NJDOH NFPA resins, gums, and varnish, in making hydraulic fluids, and in HEALTH - 2 medications for animals. FLAMMABILITY - 3 REACTIVITY - 0 f ODOR THRESHOLD = 1 to 15 ppm FLAMMABLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f n-Butyl Alcohol is on the Right to Know Hazardous f n-Butyl Alcohol can affect you when inhaled and by Substance List because it is cited by OSHA, ACGIH, DOT, passing through the skin. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can irritate and burn the skin. f This chemical is on the Special Health Hazard Substance f n-Butyl Alcohol can irritate and burn the eyes with possible List. eye damage. f Inhaling n-Butyl Alcohol can irritate the nose, throat and lungs. f Exposure to n-Butyl Alcohol can cause headache, dizziness, nausea and vomiting. SEE GLOSSARY ON PAGE 5. f n-Butyl Alcohol can damage the liver, kidneys, hearing, and sense of balance. -
N-Hexyl-Chloroformate-NHEXCF.Pdf
Date of issue: 11. 02. 2004. Date of revision: 15.01.2015. Version: CLP_ C msds-europe.com SAFETY DATA SHEET SECTION 1 : IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier: HEXYL CHLOROFORMATE Synonym: Chloroformic Acid Hexyl Ester CAS number: 6092-54-2 EU number: 228-036-4 Index number: 607-064-00-4 Registration number: Registration number is not available for this substance since this substance or its use is exempted from registration based on Article 2 of REACH regulation, or registration is not necessary due to the annual tonnage band, or the registration is scheduled to a later registration date. 1.2. Relevant identified uses of the substance and uses advised against: Organic synthesis intermediate for industrial use. 1.3. Details of the supplier of the safety data sheet: FRAMOCHEM FRENCH-HUNGARIAN FINE CHEMICALS LTD. 3700 Kazincbarcika, Szerviz str. 5., POB. 504 Telephone: +36 (48) 311-991 Fax: +36 (48) 512-162 1.3.1. Responsible person: - E-mail: [email protected] 1.4. Emergency telephone number: Public Toxicological Health Service (ETTSZ) 1096 Budapest, Nagyvárad tér 2. Tel.: 06 1 476 6464, 06 80 201 199 (0-24 h) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance: Classification according to Regulation 1272/2008/EC (CLP): Acute Tox (oral) 3 – H301 Acute Tox. 3 (dermal) – H311 Skin Corr. 1B – H314 Acute Tox. (inhalative) – H331 Warning H statements: H301 – Toxic if swallowed. H311 – Toxic in contact with skin. H314 – Causes severe skin burns and eye damage. H331 – Toxic if inhaled. Classification according to Directive 67/548/EEC: T; Toxic – R 23/24/25 C; Corrosive – R34 R phrases referring to the hazards/risks: FRAMOCHEM FRENCH-HUNGARIAN FINE CHEMICALS LTD. -
Solid-Liquid Separation After Liquid-Liquid Extraction
CROATICA CHEMICA ACTA CCACAA 57 (2) 219-227 (1984) YU ISSN 0011-1643 CCA-1435 UDC 546. 73 + 543/545 Original Scientific Paper Solid-liquid Separation after Liquid-liquid Extraction: Spectrophotometric Determination of Cobalt by Extraction of its 2-Methoxyethyl Xanthate in Molten Naphthalene Mohammad F. Hussain, Rat K. Bansal, and Bal K. Puri* Chemistry Department, Indian I nstitute of Technology, New Delhi - 110 016, (India) Receiv ed July 19, 1983 A selective spectrophotometric method has been developed for the determination of cobalt after extraction of its 2-methoxyethyl xanthate complex into molten naphthalene. Cobalt reacts with this xanthate in the ratio of 1 : 2 (metal : ligand ratio) in a pH range of 3.5-9.2 and over an acid range of 2.5-7.0 M. It absorbs strongly at 355 nm. Beer's law is obeyed over the concentration range of 2.5-46.0 ~ig of cobalt in 10 ml of the final solution. The molar absorptivity and sensitivity in terms of Sandell's definition are calculated to be 1.287 x 104 1 mo1-1 cm-1 and 0.0046 µg /cm2 respecti vely. Ten replicate determinations of sample solution containing 25 µg of cobalt gives a mean absorbance of 0.546 with a standard deviation of ± 0.0037 and a relative standard deviation of ± 0.670/o. Interference by various ions has been studied and the conditions developed for the determination of cobalt in complex materials such as alloys. INTRODUCTION Several methods have been developed for the determination of cobalt using xanthates as a complex forming reagent. -
July 2014 1/15 ASSESSMENT of the PERFORMANCE
July 2014 ASSESSMENT OF THE PERFORMANCE CHARACTERISTICS OF PROPOSED IN VITRO MEMBRANE BARRIER TEST METHOD FOR SKIN CORROSION This document contains Performance Standards (PS) for determining the validation status (reliability and relevance) of similar and modified skin corrosion test methods that are structurally and mechanistically similar to the in vitro membrane barrier test method in OECD Test Guideline 435 (1), in accordance with the principles of Guidance Document No. 34 (3). These PS include a list of 40 Reference Chemicals by which to evaluate assay performance, the essential test method components by which to evaluate the structural, mechanistic and procedural similarity of a new proposed test method, and the minimum reliability and accuracy values necessary for the test method to be considered comparable to the validated reference method (VRM). INTRODUCTION 1. Test methods proposed for use under this Test Guideline should be evaluated to determine their Field Code Changed reliability and accuracy using substances of known corrosivity and non-corrosivity. When evaluated using the recommended reference chemicals (Table 1), the proposed test methods should have reliability and accuracy that are comparable to that of the validated reference test method (VRM) (2)(Table 2). The reliability and accuracy standards that should be achieved are provided in paragraphs 3 and 4. Non- corrosive and corrosive substances, ranging from strong to weak and representing relevant chemical classes are included so that the reliability and accuracy, i.e., sensitivity, specificity, false negative rates, and false positive rates, of the proposed test method can be compared to that of the validated reference test method (2)(3). -
Aluminum Phosphate
Right to Know Hazardous Substance Fact Sheet Common Name: ALUMINUM PHOSPHATE Synonyms: Aluminum Monophosphate CAS Number: 7784-30-7 Chemical Name: Phosphoric Acid, Aluminum Salt (1:1) RTK Substance Number: 0062 Date: June 1998 Revision: July 2007 DOT Number: UN 1760 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Aluminum Phosphate is an odorless, white crystalline solid Hazard Summary which is often used in liquid or gel form. It is used in ceramics, Hazard Rating NJDOH NFPA dental cements, cosmetics, paints, paper and pharmaceuticals. HEALTH 2 - FLAMMABILITY 0 - REACTIVITY 0 - CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE DOES NOT BURN Reason for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Aluminum Phosphate is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, DOT f Aluminum Phosphate can affect you when inhaled. and NIOSH. f Contact can irritate and burn the skin and eyes. f This chemical is on the Special Health Hazard Substance f Inhaling Aluminum Phosphate can irritate the nose, throat List. and lungs. SEE GLOSSARY ON PAGE 5. FIRST AID Eye Contact Workplace Exposure Limits f Immediately flush with large amounts of cool water. The following exposure limits are for inorganic Aluminum Continue for at least 15 minutes, occasionally lifting upper compounds (measured as Aluminum): and lower lids. Remove contact lenses, if worn, while rinsing. Immediate medical attention is necessary. OSHA: The legal airborne permissible exposure limit (PEL) is 15 mg/m3 (as total dust), and 5 mg/m3 (as respirable Skin Contact dust) averaged over an 8-hour workshift. -
Possible Atmospheric Origins of Perchlorate on Mars. Dc
40th Lunar and Planetary Science Conference (2009) 1567.pdf POSSIBLE ATMOSPHERIC ORIGINS OF PERCHLORATE ON MARS. D. C. Catling1,2, M. W. Claire3, R. C. Quinn4, K. J. Zahnle5, B. C. Clark6, S. Kounaves7, M. H. Hecht8. 1Dept. Earth Sciences, University of Bristol, Bristol, United Kingdom. 2Earth and Space Sciences/Astrobiology Program, University of Washington, Box 351310, Seattle WA 98195 ([email protected]). 3Dept. Astronomy/Astrobiology Program, University of Washington, Seattle WA 98195. 4SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035. 5NASA Ames Research Center, Moffet Field, CA 94035. 6Space Exploration Systems, Lockheed Martin, Denver, CO 80201. 7Dept. of Chemistry, Tufts University, Medford, MA 02035. 8JPL/Caltech, Pasadena, CA 91109. Introduction: The wet chemistry experiment on playas [4]. Perchlorate is also found in carbonates of NASA’s Phoenix lander had cells where ~1 cm3 of the upper Eocene Mission Valley Formation of San Martian soil was mixed with 25 cm3 of dilute leaching Diego [5] and sylvinite (KCl) ore in central Canada solution and electrochemical measurements were made and Permo-Triassic New Mexico [4]. to identify a variety of soluble ions. Surprisingly, per- Isotopic analysis allows Atacama perchlorate to be - chlorate (ClO4 ) was measured as a dominant anion [1]. definitively attributed to an atmospheric source. Non- For an assumed soil sample mass ~1g, the soluble per- mass dependent (NMD) fractionation occurs in the - chlorate concentration converts to ~1wt% in the soil oxygen isotopes of ClO4 . This is ascribed to the pho- [1]. tochemical reaction of ozone with volatile chlorine These data suggest that most of the chlorine in the species because perchlorate inherits its distinctive soil at the Phoenix site has been oxidized to perchlo- NMD oxygen isotope signature from O3. -
Hazardous Materials Management Plan
The George Washington University Hazardous Materials Management Plan Introduction The George Washington University is committed to providing a safe laboratory environment for its faculty, staff, students and visitors. The goal of the Hazardous Materials Management Plan (HMMP) is to minimize the risk of injury or illness to laboratory workers by ensuring that they have the training, information, support and equipment needed to work safely in the laboratory. The HMMP is comprised of two main elements. The first part describes potential hazards of hazardous materials found in a laboratory and reviews safe laboratory practices. The second part describes the hazardous materials stored in laboratories at GW, including intended storage and use areas and chemical inventory. March 27, 2006 Table of Contents 1.1 Chemical and Hazard Identification .....................................................................................3 1.1.1 Labels.................................................................................................................................3 1.1.2 Material Safety Data Sheets................................................................................................3 1.2 Laboratory Basics.................................................................................................................3 1.3 Chemical Storage..................................................................................................................4 1.3.1 General Considerations ......................................................................................................4