Hazardous Substance Fact Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates. -
Chemical Storage Cabinets
Storage cabinets Incompatible chemicals must be kept separately to reduce the risk of mixing in case of accidental breakage or response to an emergency within the laboratory. (A starting point is to check the Safety Data Sheet for hazard and storage requirements.) Containers must be kept tightly closed and stored in cabinets which are suitable for the chemical. It is important to check materials which have a shelf life and safely dispose of before the date expires, and generally check the label to ensure it is still suitable and provides the necessary safety information. The condition of the cabinets needs to be checked to ensure that they are providing adequate containment of the materials being stored. Ensure spill trays are used which are capable of holding 110% volume of the largest container being stored in the tray. There may be occasions where the quantities being stored are very small and secondary containment of the chemicals within a cabinet provided would be deemed as providing adequate separation. The table below provides guidance on the type of materials being stored and the type of cabinet which is suitable for that material. This is not a definitive list and does not include ‘Highly Toxic’ materials. Separate guidance is in development. Hazard Group Type of cabinet Safety Sign and suggested Other information Max allowed (where wording applicable) Flammable Liquids Metal flammable storage Flammable liquids must 50 litres of highly flammable cabinet to BS EN 14470- never be stored in a liquid stored in any one E.g. alcohols, toluene, 1:2004, offering minimum refrigerator or freezer laboratory. -
Treating Irrigation Systems with Chlorine 1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. CIR1039 Treating Irrigation Systems with Chlorine 1 Kati W. Migliaccio, Brian Boman and Gary A. Clark2 Introduction Irrigation systems can become partially or completely clogged from biological growths of bacteria or algae which are often present in surface water and ground water. Bacteria and algae use chemical elements such as nitrogen, phosphorus, sulfur, or iron as nutrient sources to grow and develop (Figures 1 and 2) (Pitts et al., 2003). Thus, irrigation systems that also receive nutrients (such as natural background concentrations in the water or from fertigation) may experience greater rates of clogging. While all irrigation systems should have some Figure 1. Irrigation emitter clogged with algal growth. type of filtration system, this alone cannot effectively Credits: Brian Boman UF/IFAS remove microorganisms. Microorganism growth can result in clogged pipes, fittings, and emission devices of the chlorine chemical must be used to provide an (sprinklers, drippers, spray jets, etc.), decreasing effective water treatment program without damaging water application amounts and reducing application the irrigation system or the agricultural crop. uniformity and efficiency. The results of these are This publication provides a guide for using generally reduced agriculture productivity. A chlorine to treat inhibiting microorganism buildup in chemical method for removing microbial growth is irrigation systems. chlorination. Proper injection methods and amounts 1. This document is CIR1039, one of a series of the Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date July 1992. -
186 SESSION LAWS [Chap
186 SESSION LAWS [Chap. Sec. 2. This act shall take effect and be in force from and after its passage. Approved April 13, 1925. CHAPTER 187—S. F. No. 984. An act to safeguard the distribution and sale of certain danger- ous caustic or corrosive acids, alkalis, and other substances. Be it enacted by the Legislature of the State of Minnesota: Section 1. Definitions.—That in this act, unless the context or subject-matter otherwise requires, A. The term "dangerous caustic or corrosive substance" means each and all of the acids, alkalis, and substances named below: (a) Hydrochloric acid and any preparation containing free or chemi- cally unneutralized hydrochloric acid (HC1) in a concentration of ten per centum or more; (b) Sulphuric acid and any preparation containing free or chemically unneulralized sulphuric acid (H2SO4) in a concentration of ten per centum or more; (c) Nitric acid or any preparation containing free or chemically unneutralized nitric acid (HNO3) in a concentration of five per centum or more; (d) Carbolic acid (C6H5OH), otherwise known as phenol, and any preparation containing carbolic acid in a concentration of five per centum or more; (e) Oxalic acid and any preparation containing free or chemically unneutralized oxalic acid (H2C2O4) in a con- centration of ten per centum or more; (f) Any salt of oxalic acid and any preparation containing any such salt in a concentration of ten per centum or more; (g) Acetic acid or any preparation con- taining free or chemically unneutralized acetic acid (HC2H3O2) in a concentration of -
N-BUTYL ALCOHOL
Right to Know Hazardous Substance Fact Sheet Common Name: n-BUTYL ALCOHOL Synonyms: Propyl Carbinol; n-Butanol CAS Number: 71-36-3 Chemical Name: 1-Butanol RTK Substance Number: 1330 Date: November 1998 Revision: January 2008 DOT Number: UN 1120 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE n-Butyl Alcohol is a colorless liquid with a strong, sweet Hazard Summary alcohol odor. It is used as a solvent for fats, waxes, shellacs, Hazard Rating NJDOH NFPA resins, gums, and varnish, in making hydraulic fluids, and in HEALTH - 2 medications for animals. FLAMMABILITY - 3 REACTIVITY - 0 f ODOR THRESHOLD = 1 to 15 ppm FLAMMABLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f n-Butyl Alcohol is on the Right to Know Hazardous f n-Butyl Alcohol can affect you when inhaled and by Substance List because it is cited by OSHA, ACGIH, DOT, passing through the skin. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can irritate and burn the skin. f This chemical is on the Special Health Hazard Substance f n-Butyl Alcohol can irritate and burn the eyes with possible List. eye damage. f Inhaling n-Butyl Alcohol can irritate the nose, throat and lungs. f Exposure to n-Butyl Alcohol can cause headache, dizziness, nausea and vomiting. SEE GLOSSARY ON PAGE 5. f n-Butyl Alcohol can damage the liver, kidneys, hearing, and sense of balance. -
N-Hexyl-Chloroformate-NHEXCF.Pdf
Date of issue: 11. 02. 2004. Date of revision: 15.01.2015. Version: CLP_ C msds-europe.com SAFETY DATA SHEET SECTION 1 : IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier: HEXYL CHLOROFORMATE Synonym: Chloroformic Acid Hexyl Ester CAS number: 6092-54-2 EU number: 228-036-4 Index number: 607-064-00-4 Registration number: Registration number is not available for this substance since this substance or its use is exempted from registration based on Article 2 of REACH regulation, or registration is not necessary due to the annual tonnage band, or the registration is scheduled to a later registration date. 1.2. Relevant identified uses of the substance and uses advised against: Organic synthesis intermediate for industrial use. 1.3. Details of the supplier of the safety data sheet: FRAMOCHEM FRENCH-HUNGARIAN FINE CHEMICALS LTD. 3700 Kazincbarcika, Szerviz str. 5., POB. 504 Telephone: +36 (48) 311-991 Fax: +36 (48) 512-162 1.3.1. Responsible person: - E-mail: [email protected] 1.4. Emergency telephone number: Public Toxicological Health Service (ETTSZ) 1096 Budapest, Nagyvárad tér 2. Tel.: 06 1 476 6464, 06 80 201 199 (0-24 h) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance: Classification according to Regulation 1272/2008/EC (CLP): Acute Tox (oral) 3 – H301 Acute Tox. 3 (dermal) – H311 Skin Corr. 1B – H314 Acute Tox. (inhalative) – H331 Warning H statements: H301 – Toxic if swallowed. H311 – Toxic in contact with skin. H314 – Causes severe skin burns and eye damage. H331 – Toxic if inhaled. Classification according to Directive 67/548/EEC: T; Toxic – R 23/24/25 C; Corrosive – R34 R phrases referring to the hazards/risks: FRAMOCHEM FRENCH-HUNGARIAN FINE CHEMICALS LTD. -
On the Protective Effect of Omega-3 Against Propionic Acid-Induced Neurotoxicity in Rat Pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery
El-Ansary et al. Lipids in Health and Disease 2011, 10:142 http://www.lipidworld.com/content/10/1/142 RESEARCH Open Access On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery Abstract Backgrounds: The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective: To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods: 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-a, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain’s tissue of different groups. Results: The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. -
Methods of Extraction, Refining and Concentration of Fish Oil As a Source of Omega-3 Fatty Acids
Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 645 Transformation and agro-industry Review article Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega 3 Jeimmy Rocío Bonilla-Méndez,1* José Luis Hoyos-Concha2 1 Researcher, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-5362-5950 2 Lecturer, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-9025-9734 Editor temático: Miguel Ángel Rincón Cervera (Instituto de Nutrición y Tecnología de los Alimentos [INTA]) Date of receipt: 05/07/2017 Date of approval: 15/03/2018 How to cite this article: Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 645-668. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684 This license allows distributing, remixing, retouching, and creating from the work in a non-commercial manner, as long as credit is given and their new creations are licensed under the same conditions. * Corresponding author. Universidad del Cauca, Facultad de Ciencias Agrarias. Vereda Las Guacas, Popayán, Colombia. 2018 Corporación Colombiana de Investigación Agropecuaria Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 Abstract Fish oil is an industrial product of high nutritional methods, there are new technologies with potential value because of its Omega-3 polyunsaturated fatty to be applied on fish oil. -
July 2014 1/15 ASSESSMENT of the PERFORMANCE
July 2014 ASSESSMENT OF THE PERFORMANCE CHARACTERISTICS OF PROPOSED IN VITRO MEMBRANE BARRIER TEST METHOD FOR SKIN CORROSION This document contains Performance Standards (PS) for determining the validation status (reliability and relevance) of similar and modified skin corrosion test methods that are structurally and mechanistically similar to the in vitro membrane barrier test method in OECD Test Guideline 435 (1), in accordance with the principles of Guidance Document No. 34 (3). These PS include a list of 40 Reference Chemicals by which to evaluate assay performance, the essential test method components by which to evaluate the structural, mechanistic and procedural similarity of a new proposed test method, and the minimum reliability and accuracy values necessary for the test method to be considered comparable to the validated reference method (VRM). INTRODUCTION 1. Test methods proposed for use under this Test Guideline should be evaluated to determine their Field Code Changed reliability and accuracy using substances of known corrosivity and non-corrosivity. When evaluated using the recommended reference chemicals (Table 1), the proposed test methods should have reliability and accuracy that are comparable to that of the validated reference test method (VRM) (2)(Table 2). The reliability and accuracy standards that should be achieved are provided in paragraphs 3 and 4. Non- corrosive and corrosive substances, ranging from strong to weak and representing relevant chemical classes are included so that the reliability and accuracy, i.e., sensitivity, specificity, false negative rates, and false positive rates, of the proposed test method can be compared to that of the validated reference test method (2)(3). -
Formic Acid Acetic Acid Propionic Acid Butyric Acid Valeric Acid Caproic
Organic Acids: Formic acid Citric acid Acetic acid Malic acid Propionic acid Benzoic acid Butyric acid Tartaric acid Valeric acid Caproic acid Oxalic acid Lactic acid Organic Bases: Pyridine Imidazole (solid) Benzimidazole Aniline TEA (tri-ethyl amine) Histidine Nitroaniline Imidazole (dissolved) Amino bases/ Nucleotides ממסים אורגניים (מכילים קשר פחמן-מימן): :(Organic Solvents (contains carbon-hydrogen bond Xylene DMF Hexane Parafine oil Ethylacetate Formamide IPA Piperidine Trizol/Trireagent Butanol SDS (solid) Acetone PMSF (Phenylmethanesulfonyl fluoride) Methanol Tween PFA RNA / DNA (kit parts that contains thioisocyanate) Toluene BME (beta mercaptoethanol) DMSO Ethylenglycol Ethanol Halogenated Organic Solvents (contains F, Cl, Br, I): ממסים אורגניים הלוגניים (מכילים F, Cl, Br, I) Chloroform (CHCl3) Methylene chloride Vinyl chloride Tetrafluoroethylene (CF2 =CF2) Trichloroethylene (CHCl=CCl2) Bromoethane Tert-Butyl bromide חומרים אנאורגניים (חומרים שהם לא חומצה/בסיס אנאורגני) Inorganic Materials (are not inorganic acid/base) LiCl Salts (such as MgCl2, CaCl) Hydrogen peroxide (H2O2) Metals (Cu, Pb, Na etc.) Ammonium thiocyanate (NH4SCN) Sodium Azide (NaN3) Ammonium azide (NH4N3) בסיסים אנאורגניים :Inorganic Bases NH3 NaOH NH4OH Ba(OH)2 NaOH (dissolved) Ca(OH)2 KOH (dissolved) CaCO3 KOH חומצות אנאורגניות: :Inorganic Acids Boric acid (H3BO3) Hydrochloric acid (HCl) Hydrofluoric acid (HF) Nitric acid (HNO3) Hydrobromic acid (HBr) Phosphoric acid (H3PO4) Perchloric acid (HClO4) Sulfuric acid (H2SO4) Hydroiodic acid (HI) Cytotoxic materials: -
Aluminum Phosphate
Right to Know Hazardous Substance Fact Sheet Common Name: ALUMINUM PHOSPHATE Synonyms: Aluminum Monophosphate CAS Number: 7784-30-7 Chemical Name: Phosphoric Acid, Aluminum Salt (1:1) RTK Substance Number: 0062 Date: June 1998 Revision: July 2007 DOT Number: UN 1760 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Aluminum Phosphate is an odorless, white crystalline solid Hazard Summary which is often used in liquid or gel form. It is used in ceramics, Hazard Rating NJDOH NFPA dental cements, cosmetics, paints, paper and pharmaceuticals. HEALTH 2 - FLAMMABILITY 0 - REACTIVITY 0 - CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE DOES NOT BURN Reason for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Aluminum Phosphate is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, DOT f Aluminum Phosphate can affect you when inhaled. and NIOSH. f Contact can irritate and burn the skin and eyes. f This chemical is on the Special Health Hazard Substance f Inhaling Aluminum Phosphate can irritate the nose, throat List. and lungs. SEE GLOSSARY ON PAGE 5. FIRST AID Eye Contact Workplace Exposure Limits f Immediately flush with large amounts of cool water. The following exposure limits are for inorganic Aluminum Continue for at least 15 minutes, occasionally lifting upper compounds (measured as Aluminum): and lower lids. Remove contact lenses, if worn, while rinsing. Immediate medical attention is necessary. OSHA: The legal airborne permissible exposure limit (PEL) is 15 mg/m3 (as total dust), and 5 mg/m3 (as respirable Skin Contact dust) averaged over an 8-hour workshift. -
Guidelines for Using Perchloric Acid
Guidelines for Using Perchloric Acid Perchloric acid (HClO4) is a strong mineral acid. Under some circumstances it may act as an oxidizer and/or present an explosion hazards. These guidelines present information on how to handle and store perchloric acid safely. Please notify EH&S at 8-8182 if you are using perchloric acid in your laboratory. Using Perchloric Acid (< 72%) at Room Temperature At room temperature, perchloric acid up to concentrations of 72% has properties similar to other strong mineral acids. It is a highly corrosive substance and causes severe burns on contact with the eyes, skin, and mucous membranes. When used under these conditions, perchloric acid reacts as a strong non-oxidizing acid. The following precautions should be taken when using perchloric acid under these conditions: · Substitute with less hazardous chemicals when appropriate. Use dilute solutions (< 60%) whenever possible. · Conduct operations involving cold perchloric acid in a properly functioning chemical fume hood with current EH&S certification. If operations are conducted frequently or in large quantities contact EH&S to determine if a specially designed fume hood dedicated to perchloric acid use is required. · Always use impact-resistant chemical goggles, a face shield, neoprene gloves, and a rubber apron when handling perchloric acid. · When using or storing even dilute perchloric acid solutions avoid contact with strong dehydrating agents (concentrated sulfuric acid, anhydrous phosphorous pentoxide, etc.). These chemicals may concentrate the perchloric acid and make it unstable. · Always transfer perchloric acid over a sink or other suitable containment in order to catch any spills and afford a ready means of cleanup and disposal.