D5.1 State of the Art on EGNSS System for the Rail
Total Page:16
File Type:pdf, Size:1020Kb
Ref. Ares(2017)1544506 - 22/03/2017 D5.1 State of the art of EGNSS projects for the rail application Project acronym: STARS Project full title: Satellite Technology for Advanced Railway Signalling EC Contract No.: (H2020) 687414 Version of the document: 09 Protocol code: STR-WP5-D-IFS-033 Responsible partner: IFSTTAR Reviewing status: Final Delivery date: 21/03/17 Dissemination level: PUBLIC This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 687414 SATELLITE TECHNOLOGY FOR ADVANCED RAILWAY SIGNALLING CHANGE RECORDS Version Date Changes Authors J. MARAIS (IFSTTAR), J. 01 22.06.2016 First draft sent to WP5 partners BEUGIN (IFSTTAR) Second draft after comments of Jean 02 21.07.2016 Poumailloux (TAS), Karel Veselý (AZD), J. Marais (Ifsttar) Barbara Brunetti (ASTS) Locoprol, Satloc, Girasole, Ecorail added in J. Marais (Ifsttar) 03 22.07.2016 table IV 04 26.07.2016 Added information about 3inSat F. Rispoli (ASTS) 5th draft after comments of M. Rousseau (ALS) J. Marais (Ifsttar) 05 01.09.2016 about Locoprol/Locoloc Inclusion of NGTC and line about NGTC in J. Marais (Ifsttar), P. Gurnik 06 05.10.2016 table IV (UNIFE) 07 18.12.2016 Finale version after ASTS comments J. Marais (Ifsttar) 08 06.01.2017 Final version after TMT approval A. Toma (DAPP) 09 02.03.2017 Completion of acronym list and complement 3.1 J. Marais (Ifsttar) with existing systems STR-WP5-D-IFS-033-03 Page 2 of 61 SATELLITE TECHNOLOGY FOR ADVANCED RAILWAY SIGNALLING TABLE OF CONTENTS CHANGE RECORDS ...................................................................................................................... 2 TABLE OF CONTENTS .................................................................................................................. 3 LIST OF FIGURES .......................................................................................................................... 4 1 INTRODUCTION ...................................................................................................................... 5 1.1 Executive summary .......................................................................................................... 5 1.2 Definitions and acronyms ................................................................................................. 5 2 GNSS AUGMENTATION SYSTEMS ..................................................................................... 11 2.1 General principles .......................................................................................................... 11 2.2 GBAS ............................................................................................................................. 13 2.3 SBAS ............................................................................................................................. 14 3 EGNSS USE IN RAIL APPLICATIONS - PREVIOUS INITIATIVES AND RESULTS ............ 18 3.1 The application context in Europe .................................................................................. 18 3.2 Main project objectives, performances and characteristics ............................................. 20 3.3 Review of solutions ........................................................................................................ 34 3.4 Synthesis ....................................................................................................................... 41 4 DISCUSSION ON THE SUITABILITY OF INTEGRITY CONCEPTS IN RAIL ENVIRONMENTS ......................................................................................................................... 42 4.1 Identified experiences .................................................................................................... 42 4.1.1 GBAS-based integrity concepts .................................................................................................. 42 4.1.2 SBAS-based integrity concepts .................................................................................................. 44 4.1.3 Combination of SBAS and GBAS ............................................................................................... 44 4.2 Identified or known EGNOS limitations [48] .................................................................... 47 4.3 EGNOS limitations in the rail environment ..................................................................... 49 4.3.1 EGNOS suitability to rail specifications ...................................................................................... 49 4.3.2 EGNOS availability ..................................................................................................................... 49 4.3.3 Classical pseudo-range error models versus real models ......................................................... 51 4.3.4 PL computation on the basis of LOS models ............................................................................. 52 5 CONCLUSIONS ..................................................................................................................... 55 6 ANNEX .................................................................................................................................. 56 7 REFERENCES ....................................................................................................................... 57 STR-WP5-D-IFS-033-03 Page 3 of 61 SATELLITE TECHNOLOGY FOR ADVANCED RAILWAY SIGNALLING LIST OF FIGURES Figure 1: Possible situations obtained with GNSS integrity monitoring .......................................... 13 Figure 2: LAAS architecture (Source FAA.org) .............................................................................. 14 Figure 3: EGNOS v2 architecture (Source [48]) ............................................................................. 16 Figure 4: Existing and planned SBAS (Source [58]) ...................................................................... 16 Figure 5: ETCS Levels [4] ............................................................................................................. 19 Figure 6: Estimated positioning accuracy with and without EGNOS along an Italian High speed railway line [45]. ..................................................................................................................... 34 Figure 7: NGTC preliminary functional architecture for ERTMS virtual balise concept ................... 37 Figure 8: GaLoROI localization unit vehicle equipment [17]. .......................................................... 38 Figure 9: SIL2 architecture of the GRAIL2 project [31]................................................................... 38 Figure 10: High integrity architecture of GNSS/INS positioning with Fault Detection and Diagnosis based on Principal Component Analysis [35]. CKF is a cubature Kalman filter, variation of the Kalman filter. .......................................................................................................................... 39 Figure 11: Flowchart of AIMA-aided GNSS-based train integrated positioning [64] ....................... 40 Figure 12: Illustrations of the satellite state detection in a fisheye image on the original image and on classified regions [40]. ....................................................................................................... 40 Figure 13: Overview of GNSS LDS System [43]. ........................................................................... 45 Figure 14: Histogram of position estimation error. Left: Only EGNOS mode, Right: Only TALS Mode [43]. .............................................................................................................................. 46 Figure 15: EGNOS availability along train routes in Italy, measured in the Locoprol project [45]. .. 50 Figure 16: Distribution of the positioning mode measured along an Italian line in the RUNE project: no solution in blue, GNSS alone in green and GNSS/EGNOS in red [62]. .............................. 51 Figure 17: Pseudo-range error distribution versus time for LOS and NLOS received satellites [44]. ............................................................................................................................................... 52 Figure 18: PL obtained in the RUNE project along a line considering that valid positions require that PDOP<6 [18]. .................................................................................................................. 53 Figure 19: Roma-Pisa railway line. Protection level versus travelled distance with GPS constellation alone. PL is computed without augmentation system in blue (RAIM) and with the support of trackside augmentation systems for the other curves [10]...................................... 53 Figure 20: Stanford diagram .......................................................................................................... 54 STR-WP5-D-IFS-033-03 Page 4 of 61 SATELLITE TECHNOLOGY FOR ADVANCED RAILWAY SIGNALLING 1 INTRODUCTION 1.1 EXECUTIVE SUMMARY The objective of STARS task 5.1 is to review the existing navigation augmentation systems and services in terms of performances achieved and application environments, and to analyse the experimentations and projects already performed in railway applications related to the use of these systems and services. This report aims to draw the state of the art of existing monitoring system (as used in aeronautics) and past experiences of railways when using such concepts. The focus only concerns GNSS-based positioning