Life Cycle Cost of Smart Wayside Object Controller Livscykelkostnad Av Smart Wayside Object Controller

Total Page:16

File Type:pdf, Size:1020Kb

Life Cycle Cost of Smart Wayside Object Controller Livscykelkostnad Av Smart Wayside Object Controller DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2021 Life Cycle Cost of Smart Wayside Object Controller Livscykelkostnad av Smart Wayside Object Controller FILIPP ZAROV KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES i Author Filipp Zarov MSc in Railway Engineering School of Engineering Sciences KTH Royal Institute of Technology Title Life Cycle Cost of Smart Wayside Object Controller Livscykelkostnad av Smart Wayside Object Controller Host Company ALSTOM Transport AB Trafikverket External Supervisor Fredric Bonnevier, Head of DC performance, ALSTOM Internal (KTH) Supervisor Zhendong Liu, Researcher, vehicle engineering and solid mechanics, KTH Examiner Sebastian Stichel, Professor, Department of Engineering Mechanics, KTH Date August 2021 ii Sammanfattning I ett regionalt järnvägssignalsystem är utdelar de enheter som ansvarar för att kontrollera spårutrustning och fungerar de som gränsyta för spårutrustning med ställverksdatorn och tågtrafikledning systemet. Dock, tillhörande kablar (signalkablar ock kraftkablar), samt anläggningsinfrastruktur utgör en stor kapitalinvestering och de är en källa till märkbar kapitalkostnad och driftskostnader, särskilt på landsbygdsområden, där tillgänglighet och anslutning till elnätet och ställverket är problematisk. Dessutom, kablar och signalutrustning utsätts för stöld och sabotage i sådana områden. Detta kan öka den totala livscykelkostnaden ytterligare. Shift2rail forskningsprogram, som genomförs av EU och järnvägsintressenter, försöker att ta itu med problemet och modernisera utdelar konceptet genom projektet “TD2.10 Smart Radio Connected Wayside Object Controller”, där målet är att utveckla en Smart Spårutrustning Utdelar, så kallade SWOC. En SWOC har kapacitet för trådlös kommunikation mellan central ställverket och spårutrustning, samt decentralisering av satällverkslogiken. Dessa innovationer kan minska nödvändig kabeldragning, öka tillgängligheten av diagnostiska data, vilket minskar underhålls- och driftskostnader och kan leda till energibesparing genom att använda lokala kraftkällor. Den viktigaste effekten av SWOC är en betydande minskning av kapitalkostnader, driftskostnader och totala livscykelkostnaden för en installation som använder SWOC istället för typiska utdelningsystemet. Detta examensarbete fokuserar på att uppskatta LCC för ett SWOC-system och jämföra det med en konventionell utdelingsystem genom att utveckla en LCC-modell som täcker båda fallen, samt att använda denna modell för att undersöka när det är mer lönsamt att implementera en SWOC istället av ett typiskt utdelingsystem. Detta görs genom att använda LCC-analys och kombinera en mängd olika metoder i en parametrisk studie. För att göra detta genomförs en grundlig analys av ett modernt regionalt järnvägssignalsystem, samt grunden för livscykelanalys. Samtidigt beskrivs både ett typiskt utdelingssystem - och SWOC-system samt faktorer som påverkar deras kostnad deskuteras. Metoden består av LCC-modelleringsdelen samt insamling av metoder och tekniker som används för att beräkna LCC för OC / SWOC-system och för att uppskatta kostnaderna för olika delmodeller och parametrar för processen. För modelleringsprocessen valdes stationen i Björbo, som arbetar under ERTMS-R-systemet, men för analysens skull antas att det typiska bassystemet på plats är en typisk OCS och tillsammans med befintlig planritning och kabelplan är används som grund för analys. Slutligen används den bildade LCC-modellen i en parametrisk studie för att undersöka hur LCC påverkas genom att använda OC eller SWOC samt hur LCC reagerar på förändringar i parametrar såsom antal OC / SWOC, trafiktäthet och lokala kraftinstallationskostnader för Björbo-stationen. Nyckelord: järnvägssignalsystem, ställverk, hårdvara, Utdelar, SWOC, livscykelkostnad, förnybara energikällor iii Abstract In a regional railway signalling system, object controllers are the devices responsible for controlling Track Side Equipment and act as interfaces for TSE with the interlocking computer and the Traffic control system. However, associated cabling (signal and power cabling) and civil works pose a major capital investment and it is a source of significant Capital and Operational expenses, particularly in rural areas, where accessibility and connectivity to power grid and to the interlocking are a problem. Furthermore, cables/signalling equipment are exposed to sabotage and theft in such areas. This can increase the total Life Cycle Cost even further. The Shift2Rail research programme, which was initiated by the European Union and railway stakeholders, tries to address this issue, and revamp the Object Controller concept through the project “TD2.10 Smart radio connected wayside object controller”, where the aim is to develop a Smart Wayside Object Controller (SWOC). A SWOC is capable of wireless communication between central interlocking and TSE as well as decentralization of interlocking logic. These innovations can reduce the cabling required, increase the availability of diagnostic data, thus reducing maintenance and operational costs and can lead to power saving by utilizing local power sources. The most important impact of the SWOC is a significant reduction of CAPEX, OPEX and of total LCC for an installation utilizing SWOCs, instead of typical OCS. This work focuses on estimating the LCC of a SWOC system and to compare it with a conventional OCS by developing an LCC model that covers both cases, as well as to use this model to examine when it is more profitable to implement a SWOC, instead of an OCS system. This is done by utilizing LCC analysis and combining a variety of methods in a parametric study. To that extend, a thorough analysis of a modern regional railway signalling system, as well as the basis for LCCA are being discussed. At the same time, both OC and SWOC systems are being described and factors affecting their cost discussed. The methodology is comprised of the LCC modelling part as well as the collection of methods and techniques used to calculate the LCC of OC/SWOC systems and to estimate the costs of different sub-models and parameters of the process. For the modelling process, the station of Björbo was chosen, which operates under ERTMS-R system, but for the sake of the analysis it is assumed that the typical base system in place is an OCS and together with the existing track layout and equipment it is used as the basis of the analysis. Finally, the formed LCC model is being used in a parametric study to examine how the LCC is affected by using OC or SWOC as well as how LCC responds to changes in parameters such as number of OC/SWOC, traffic density and local power installation cost for the Björbo station. Keywords: railway signalling system, interlocking, hardware, Object Controller, Smart Wayside Object controller, Lifecycle Cost, renewable energy sources iv Nomenclature and Abbreviations AC Alternating Current OC Object Controller ABS Automatic Block System OCS Object Controller System ATC Automatic Train Control O&S Operations and Support ATP Automatic Train Protection OPEX Operational Expenses CAPEX Capital Expenses PCE Parametric Cost Estimation CTC Centralized Traffic Control PD Power Distribution CCS Command Control and Safety PSU Power Supply Unit dB Decibel PVC Polyvinyl Chloride DC Direct Current PV Photovoltaic DMU Diesel Multiple Unit RBC Radio Block Centre DTC Direct Traffic Control ROW Right Of Way EC Element Controller (see OC/OCS) SHS Standalone Hybrid System EMU Electric Multiple Unit SWOC Smart Wayside Object Controller EPR Ethylene Propylene Rubber STM Specific Transmission Module ERA European Union Agency for Railways TCC Traffic Control centre ERTMS European Rail Traffic Management System TD Technology Demonstration ERTMS-R European Rail Traffic Management System – TETRA Terrestrial Trunked Radio Regional ETCS European Train Control System TMS Traffic Management System EU European Union TOC Total Ownership Cost FO Fiber Optics TOB Technical Object Building GSM-R Global System for Mobile Communications – TPSS Traction Power Substation Railway LCC Life Cycle Cost TRV Trafikverket (Swedish Transport Administration) LCCA Life Cycle Cost Analysis TSE Track Side Equipment LED Light Emitting Diodes TT&TO Timetable and Train Orders LEU Landside Electronic Unit TVM Time Value of Money LRBG Last Reference Balise Group TWC Track Warrant Control LSZH Low Smoke Zero Halogen UPS Uninterrupted Power Supply MBS Manual Block System UHF Ultra-High Frequency Radio NTC National Train Control XLPE Cross-Linked Polyethylene v Acknowledgements First and foremost, I would like to thank Fredric Bonnevier, Head of DC performance of Alstom, for guiding me through this task, by providing data crucial for the estimation of SWOC LCC model, by helping to define the scope of such a task as well as providing an in- depth understanding and useful advice, as well as support for the implementation of this project. Second, I would like to thank Mihael Zitnik, system engineer and fellow EMC Expert of Alstom for providing me with data related to OCS and SWOC, for helping me understand the SWOC project from an energy perspective and for providing me with data related to energy consumption of crucial objects, such as cables and OCs. Third, I would like to thank Anders Lindahl, Research engineer at KTH, Transport planning division for his invaluable help, guidance and provision with legislation, regulations and technical documents related to signalling infrastructure in Sweden. Fourth, I want to thank Tyler Dick, lecturer
Recommended publications
  • Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-96
    Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-96 Amtrak (ATK) Northbrook, IL December 25, 2008 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. DEPARTMENT OF TRANSPORTATION FRA FACTUAL RAILROAD ACCIDENT REPORT FRA File # HQ-2008-96 FEDERAL RAILROAD ADMINISTRATION 1.Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. Amtrak [ATK ] ATK 110589 2.Name of Railroad Operating Train #2 2a. Alphabetic Code 2b. Railroad Accident/Incident No. N/A N/A N/A 3.Name of Railroad Operating Train #3 3a. Alphabetic Code 3b. Railroad Accident/Incident No. N/A N/A N/A 4.Name of Railroad Responsible for Track Maintenance: 4a. Alphabetic Code 4b. Railroad Accident/Incident No. Northeast IL Regional Commuter Rail Corp. [NIRC] NIRC USB041 5. U.S. DOT_AAR Grade Crossing Identification Number 6. Date of Accident/Incident 7. Time of Accident/Incident 388037N Month 12 Day 25 Year 2008 07:05:00 AM PM 8. Type of Accident/Indicent 1. Derailment 4. Side collision 7. Hwy-rail crossing 10. Explosion-detonation 13. Other Code (single entry in code box) 2. Head on collision 5. Raking collision 8. RR grade crossing 11. Fire/violent rupture (describe in narrative) 3. Rear end collision 6. Broken Train collision 9. Obstruction 12. Other impacts 07 9.
    [Show full text]
  • Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2009-64
    Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2009-64 Amtrak (ATK) Fairbury, NE December 9, 2009 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. DEPARTMENT OF TRANSPORTATION FRA FACTUAL RAILROAD ACCIDENT REPORT FRA File # HQ-2009-64 FEDERAL RAILROAD ADMINISTRATION 1.Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. Amtrak [ATK ] ATK 114102 2.Name of Railroad Operating Train #2 2a. Alphabetic Code 2b. Railroad Accident/Incident No. N/A N/A N/A 3.Name of Railroad Operating Train #3 3a. Alphabetic Code 3b. Railroad Accident/Incident No. N/A N/A N/A 4.Name of Railroad Responsible for Track Maintenance: 4a. Alphabetic Code 4b. Railroad Accident/Incident No. Norfolk Southern Corp. [NS ] NS 114102 5. U.S. DOT_AAR Grade Crossing Identification Number 6. Date of Accident/Incident 7. Time of Accident/Incident 735236Y Month 12 Day 09 Year 2009 05:18: AM PM 8. Type of Accident/Indicent 1. Derailment 4. Side collision 7. Hwy-rail crossing 10. Explosion-detonation 13. Other Code (single entry in code box) 2. Head on collision 5. Raking collision 8. RR grade crossing 11. Fire/violent rupture (describe in narrative) 3. Rear end collision 6. Broken Train collision 9. Obstruction 12. Other impacts 07 9. Cars Carrying 10. HAZMAT Cars 11.
    [Show full text]
  • Moving Block Signalling 8 Moving Block Signalling and Capacity 8 Virtual Fixed Block Signalling 9
    POSTbrief Number 20, 26 April 2016 Moving Block By Lydia Harriss Signalling Inside: Summary 2 Railway Signalling in the UK 3 The European Rail Traffic Management System 4 Operating at ETCS Levels 2 and 3 7 Moving Block Signalling 8 Moving Block Signalling and Capacity 8 Virtual Fixed Block Signalling 9 www.parliament.uk/post | 020 7219 2840 | [email protected] | @POST_UK Cover image: The ERTMS/ETCS Signalling System, Maurizio POSTbriefs are responsive policy briefings from the Parliamentary Office of Science Palumbo, Railwaysignalling.eu, and Technology based on mini literature reviews and peer review. 2014 2 Moving Block Signalling Summary Network Rail is developing a programme for the national roll-out of the Euro- pean Rail Traffic Management System (ERTMS), using European Train Control System (ETCS) Level 2 signalling technology, within 25 years. It is also under- taking work to determine whether ETCS Level 3 technology could be used to speed up the deployment of ERTMS to within 15 years. Implementing ERTMS with ETCS Level 3 has the potential to increase railway route capacity and flexibility, and to reduce both capital and operating costs. It would also make it possible to manage rail traffic using a moving block signal- ling approach. This POSTbrief introduces ERTMS, explains the concept of moving block sig- nalling and discusses the potential benefits for rail capacity, which are likely to vary significantly between routes. Research in this area is conducted by a range of organizations from across in- dustry, academia and Government. Not all of the results of that work are publi- cally available. This briefing draws on information from interviews with experts from academia and industry and a sample of the publically available literature.
    [Show full text]
  • Using Information Engineering to Understand the Impact of Train Positioning Uncertainties
    Using Information Engineering to Understand the Impact of Train Positioning Uncertainties on Railway Subsystems by Hassan Abdulsalam Hamid A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Electronic, Electrical and Computer Engineering School of Engineering University of Birmingham July 2019 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Preliminaries Abstract Many studies propose new advanced railway subsystems, such as Driver Advisory System (DAS), Automatic Door Operation (ADO) and Traffic Management System (TMS), designed to improve the overall performance of current railway systems. Real time train positioning information is one of the key pieces of input data for most of these new subsystems. Many studies presenting and examining the effectiveness of such subsystems assume the availability of very accurate train positioning data in real time. However, providing and using high accuracy positioning data may not always be the most cost-effective solution, nor is it always available. The accuracy of train position information is varied, based on the technological complexity of the positioning systems and the methods that are used. In reality, different subsystems, henceforth referred to as ‘applications’, need different minimum resolutions of train positioning data to work effectively, and uncertainty or inaccuracy in this data may reduce the effectiveness of the new applications.
    [Show full text]
  • WESTRACE First-Line Maintenance Manual 11.0
    WESTRACE First-Line Maintenance Manual for WESTRACE MkI WRTOFLMM Issue 11.0 CONTACTING INVENSYS RAIL W http://www.invensysrail.com Asia Pacific ABN 78 000 102 483 179–185 Normanby Rd (Locked Bag 66) South Melbourne Victoria 3205 Australia T +61 1300 724 518 F +61 3 9233 8777 E [email protected] India No. 112–114 Raheja Chambers 12 Museum Road Bangalore 560 001 Karnataka India T +91 80 3058 8763/64 F +91 80 3058 8765 North America 2400 Nelson Miller Parkway Louisville Kentucky 40223 USA T +1 502 618 8800 F +1 502 618 8810 E [email protected] Spain, Portugal and Latin America Avda. de Castilla Apartado de Correos 6 Parque Empresarial (Edif Grecia) 28830 San Fernando de Henares Madrid Spain T +34 9 1675 4212 F +34 9 1656 9840 E [email protected] UK and Northern Europe PO Box 79 Pew Hill Chippenham Wiltshire SN15 1JD UK T +44 1249 44 1441 F +44 1249 65 2322 E [email protected] WESTRACE First-Line Maintenance Manual for WESTRACE MkI Document CI: WRTOFLMM Issue: 11.0 Date of Issue: 03 Dec 2010 Change History: Issue Date Comment Changed Checked Approved 1.0 7/9/94 WRTFGEN. initial issue 2.0 4/4/96 WRTFGEN, CR273 3.0 30/10/96 WRTFGEN, CR319 1.0 16/11/94 WETFWAYE, initial release 2.0 17/12/96 WETFWAYE, CR1385, CR1728, WR348, WR349, WR350 4.0 1/9/00 WRTOFLMM, initial issue. Compiled PGB from WRTFGEN 3.0 and WETFWAYE 2.0 CR333, 334, 379, 394, 395, 402, 404, 405, 406, 407, 440, 454, 502, 515 5.0 3/8/01 Rebuilt to correct faulty 4.0 build PGB 6.0 20/2/03 CR 783, 789, 790 PGB 7.0 11/10/04 CR831 ML DJ WMcD 8.0 12/9/05 CR325, 340, 345, 372, 378 ML SR WMcD 9.0 29/1/07 CR423, 428, 433 ML SR WMcD 10.0 10/2/09 Updated branding ML ML WMcD 11.0 03/12/10 Updated branding MH WMcD WMcD Copyright This document is protected by Copyright and all information contained therein is confidential.
    [Show full text]
  • Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-94
    Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-94 Canadian Pacific (CP) River JCT, MN December 17, 2008 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. DEPARTMENT OF TRANSPORTATION FRA FACTUAL RAILROAD ACCIDENT REPORT FRA File # HQ-2008-94 FEDERAL RAILROAD ADMINISTRATION 1.Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. SOO Line RR Co. [SOO ] SOO 209549 2.Name of Railroad Operating Train #2 2a. Alphabetic Code 2b. Railroad Accident/Incident No. SOO Line RR Co. [SOO ] SOO 209549 3.Name of Railroad Operating Train #3 3a. Alphabetic Code 3b. Railroad Accident/Incident No. N/A N/A N/A 4.Name of Railroad Responsible for Track Maintenance: 4a. Alphabetic Code 4b. Railroad Accident/Incident No. SOO Line RR Co. [SOO ] SOO 209549 5. U.S. DOT_AAR Grade Crossing Identification Number 6. Date of Accident/Incident 7. Time of Accident/Incident Month 12 Day 17 Year 2008 04:48:00 AM PM 8. Type of Accident/Indicent 1. Derailment 4. Side collision 7. Hwy-rail crossing 10. Explosion-detonation 13. Other Code (single entry in code box) 2. Head on collision 5. Raking collision 8. RR grade crossing 11. Fire/violent rupture (describe in narrative) 3. Rear end collision 6. Broken Train collision 9. Obstruction 12. Other impacts 04 9.
    [Show full text]
  • Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-48
    Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2008-48 Canadian National-North America (CN) Crystal Springs, MS May 27, 2008 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. DEPARTMENT OF TRANSPORTATION FRA FACTUAL RAILROAD ACCIDENT REPORT FRA File # HQ-2008-48 FEDERAL RAILROAD ADMINISTRATION 1.Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. Amtrak [ATK ] ATK 108129 2.Name of Railroad Operating Train #2 2a. Alphabetic Code 2b. Railroad Accident/Incident No. N/A N/A N/A 3.Name of Railroad Operating Train #3 3a. Alphabetic Code 3b. Railroad Accident/Incident No. N/A N/A N/A 4.Name of Railroad Responsible for Track Maintenance: 4a. Alphabetic Code 4b. Railroad Accident/Incident No. Canadian National - North America [CN ] CN 596181 5. U.S. DOT_AAR Grade Crossing Identification Number 6. Date of Accident/Incident 7. Time of Accident/Incident 299824D Month 05 Day 27 Year 2008 01:00: AM PM 8. Type of Accident/Indicent 1. Derailment 4. Side collision 7. Hwy-rail crossing 10. Explosion-detonation 13. Other Code (single entry in code box) 2. Head on collision 5. Raking collision 8. RR grade crossing 11. Fire/violent rupture (describe in narrative) 3. Rear end collision 6. Broken Train collision 9. Obstruction 12. Other impacts 07 9.
    [Show full text]
  • NTSB Hearing Jeff Young Asst
    NTSB Hearing Jeff Young Asst. Vice President – Transportation Systems March 4, 2009 1 Topics to Address • Current Train Control Systems • Concerns with Existing Systems • How does PTC Address Concerns with Existing Systems • UP PTC Pilot Locations • PTC Challenges • PTC Implementation Plan • PTC Project Timeline 2 Dark Territory Track Warrant Control Track Warrant Authority Limits AMTK • Main Track Not Signaled • Movement Authority Conveyed By Track Warrant or Direct Traffic Control permit •2. [X] Proceed From (Station or Location) To (Station or Location) On Main Track Spokane Subdivision •8. [X] Hold Main Track At Last Named Point • Train separation provided by train dispatcher and train crew 3 Automatic Block System (ABS) Track Warrant Control Track Warrant Authority Limits AMTK • Main Track Signaled for Movement in Both Directions • Movement Authority Conveyed By Track Warrant or Direct Traffic Control permit •2. [X] Proceed From ( Station or Location) To ( Station or Location ) On Main Track Spokane Subdivision •8. [X] Hold Main Track At Last Named Point • Train separation provided by train dispatcher, train crew and signal system 4 Automatic Block Signal (ABS) Current Of Traffic Field Signal Indication • Two Main tracks with an assigned direction of movement • Movement authority is conveyed by signal system • The tracks are only signaled for movement in the assigned direction • Train separation provided by train crew and signal system 5 Centralized Traffic Control (CTC) Field Signal Indication • One or More Main Tracks Signaled
    [Show full text]
  • View / Open TM Database Composite.Pdf
    • • • • TRANSPORTATION-MARKINGS • DATABASE • COMPOSITE CATEGORIES • CLASSIFICATION & INDEX • • • -­ • III III • 1 TRANSPORTATION-MARKINGS: A STUDY IN CO.MMUNICATION MONOGRAPH SERIES Alternate Series Title: An Inter-modal Study of Safety Aids Transportatiol1-Markings Database Alternate T-M Titles: Transport [ation] Mark [ing]s / Transport Marks / Waymarks T-MFoundations, 4th edition, 2005 (Part A, Volume I, First Studies in T-M) (3rd edition, 1999; 2nd edition, 1991) Composite Categories A First Study in T-M: The US, 2nd edition, 1993 (Part B, Vol I) Classification & Index International Marine Aids to Navigation, 2nd edition, 1988 (parts C & D, Vol I) [Unified First Edition ofParts A-D, University Press ofAmerica, 1981] International Traffic Control Devices, 2nd edition, 2004 (Part E, Volume II, Further Studies in T-M) (lst edition, 1984) Part Iv Volume III, Additional Studies, International Railway Signals, 1991 (Part F, Vol II) International Aero Navigation Aids, 1994 (Part G, Vol II) Transportation-Markil1gs: A Study il1 T-M General Classification with Index, 2nd edition, 2004 (Part H, Vol II) (1st edition, 1994) Commllnication Monograph Series Transportation-Markings Database: Marine Aids to Navigation, 1st edition, 1997 (I'art Ii, Volume III, Additional Studies in T-M) TCDs, 1st edition, 1998 (Part Iii, Vol III) Railway Signals. 1st edition, 2000 (part Iiii, Vol III) Aero Nav Aids, 1st edition, 2001 (Part Iiv, Vol III) Composite Categories Classification & Index, 1st edition, 2006 (part Iv, Vol III) (2nd edition ofDatabase, Parts Ii-v,
    [Show full text]
  • UPRR - General Code of Operating Rules
    Union Pacific Rules UPRR - General Code of Operating Rules Seventh Edition Effective April 1, 2020 Includes Updates as of September 28, 2021 PB-20280 1.0: GENERAL RESPONSIBILITIES 2.0: RAILROAD RADIO AND COMMUNICATION RULES 3.0: Section Reserved 4.0: TIMETABLES 5.0: SIGNALS AND THEIR USE 6.0: MOVEMENT OF TRAINS AND ENGINES 7.0: SWITCHING 8.0: SWITCHES 9.0: BLOCK SYSTEM RULES 10.0: RULES APPLICABLE ONLY IN CENTRALIZED TRAFFIC CONTROL (CTC) 11.0: RULES APPLICABLE IN ACS, ATC AND ATS TERRITORIES 12.0: RULES APPLICABLE ONLY IN AUTOMATIC TRAIN STOP SYSTEM (ATS) TERRITORY 13.0: RULES APPLICABLE ONLY IN AUTOMATIC CAB SIGNAL SYSTEM (ACS) TERRITORY 14.0: RULES APPLICABLE ONLY WITHIN TRACK WARRANT CONTROL (TWC) LIMITS 15.0: TRACK BULLETIN RULES 16.0: RULES APPLICABLE ONLY IN DIRECT TRAFFIC CONTROL (DTC) LIMITS 17.0: RULES APPLICABLE ONLY IN AUTOMATIC TRAIN CONTROL (ATC) TERRITORY 18.0: RULES APPLICABLE ONLY IN POSITIVE TRAIN CONTROL (PTC) TERRITORY GLOSSARY: Glossary For business purposes only. Unauthorized access, use, distribution, or modification of Union Pacific computer systems or their content is prohibited by law. Union Pacific Rules UPRR - General Code of Operating Rules 1.0: GENERAL RESPONSIBILITIES 1.1: Safety 1.1.1: Maintaining a Safe Course 1.1.2: Alert and Attentive 1.1.3: Accidents, Injuries, and Defects 1.1.4: Condition of Equipment and Tools 1.2: Personal Injuries and Accidents 1.2.1: Care for Injured 1.2.2: Witnesses 1.2.3: Equipment Inspection 1.2.4: Mechanical Inspection 1.2.5: Reporting 1.2.6: Statements 1.2.7: Furnishing Information
    [Show full text]
  • A Survey of GNSS-Based Research and Developments for the European Railway Signaling Juliette Marais, Julie Beugin, Marion Berbineau
    A Survey of GNSS-Based Research and Developments for the European Railway Signaling Juliette Marais, Julie Beugin, Marion Berbineau To cite this version: Juliette Marais, Julie Beugin, Marion Berbineau. A Survey of GNSS-Based Research and Develop- ments for the European Railway Signaling. IEEE Transactions on Intelligent Transportation Systems, IEEE, 2017, 10 (18), p2602 - 2618. 10.1109/TITS.2017.2658179. hal-01489152v3 HAL Id: hal-01489152 https://hal.archives-ouvertes.fr/hal-01489152v3 Submitted on 11 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < A survey of GNSS-based Research and Developments for the European railway signaling Juliette Marais, Julie Beugin, Marion Berbineau, Member, IEEE encountered on the European network [4]. In order to replace Abstract—Railways have already introduced satellite-based all these incompatible safety systems by an interoperable localization systems for non-safety related applications. Driven common solution, Europe has developed the European Train by economic reasons, the use of these systems for new services Control System (ETCS) for the signaling, control and train and, in particular, their introduction in signaling system is protection.
    [Show full text]
  • Ortungsanforderungen Und Ortungsmöglichkeiten Bei Sekundärbahnen
    Fakultät Verkehrswissenschaften „Friedrich List“ Professur für Verkehrssicherungstechnik Diplomarbeit Ortungsanforderungen und Ortungsmöglichkeiten bei Sekundärbahnen eingereicht von Fabian Kirschbauer geb. am 21.01.1991 in Straubing Prüfer: Prof. Dr.-Ing. Jochen Trinckauf Dr.-Ing. Ulrich Maschek Betreuer: Dr.-Ing. Michael Kunze (CERSS) Dipl.-Ing. Martin Sommer (CERSS) Dresden, den 15. Juli 2016 .......................................... Unterschrift des Studenten Autorenreferat Autorenreferat Die Sicherung von Zugfahrten erfolgt bei Eisenbahnen durch verschiedene Systeme der Sicherungstechnik. Die Ausrüstungsstandards, und damit auch die Ortungslösungen, orientieren sich an den Bedürfnissen des Kernnetzes und sind auf Bahnen untergeordne- ter Bedeutung, sog. Sekundärbahnen, hauptsächlich aus wirtschaftlichen Gründen nicht tragfähig. Steigende Anforderungen an die Sicherheit und der weiter zunehmende Kos- tendruck werden für diese Bahnen eine Ablösung der bisherigen Betriebsweise mit Hil- fe neuer technischer Möglichkeiten erfordern. Die vorliegende Arbeit soll Anforderun- gen an Ortungslösungen für Sekundärbahnen auf Grundlage bereits bestehender Umset- zungen identifizieren. Die Ergebnisse sollen die Basis für eine bedarfsgerechte Weiter- entwicklung bisheriger Techniken zur Sicherung von Zugfahrten auf Sekundärbahnen bilden. Bibliografischer Nachweis Fabian Kirschbauer Ortungsanforderungen und Ortungsmöglichkeiten bei Sekundärbahnen Technische Universität Dresden, Fakultät Verkehrswissenschaften „Friedrich List“, Professur für Verkehrssicherungstechnik
    [Show full text]