Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italic denote figures. Page numbers in bold denote tables. abiotic method 377 astronomical forcing cycles 7–8 aborted reversals 4, 5,6 astronomical harmonic features 355, 363–367 outer Great Barrier Reef 279 astronomical parameters 360 Pringle Falls 261, 262, 270–271, 273–275 astronomical signal, Garcia Canyon 335–336, 338 accretion 193 astronomical time scale 341 acquisition behaviour 16 Atlantic (NW), circulation 30 Adriatic Promontory 112 atmospheric circulation 334, 338 aeolian component 378, 379, 387, 389 atmospheric CO2 377 dust proxy 326, 333–335, 336, 338 Australia, dating latest Holocene 247 AF see alternating-field demagnetisation authigenic ferromagnetic minerals 344 age control, magnetostratigraphy 138, 139, 141, autocyclic forcing mechanism 325 142, 144, 145 age-depth model 247 backarc spreading 193 Lake Kalimpaa 250, 254–257 bacteria 343, 344 Nankai Trough 229–230, 232–240 bar-log format 345, 346, 348, 380, 381, 382 ODP Hole 711A 105, 107 Bayesian inversion 295, 297 Stirone section 317–320 bentonite 112 air-fall volcanic ash 112, 123, 193, 194–195 bioevents 91–92 Alashan Block 150, 152, 186 forminifera 85, 87–89 allocyclic forcing mechanism 325 nannofossils 88–89, 99, 103, 105 alternating-field demagnetisation biogenic components 343 Cupido Formation, Mexico 330, 331 biogenic magnetite 287–288 IODP Site U1333 17, 18 biomagnetochronology, integration high Lake Kalimpaa 251, 253 to low latitudes 29–74 Monte Cagnero 83, 84 biosilica accumulation rate 68, 69,71 Nankai Trough 192–193, 195, 197, 198, 199, 223 biostratigraphic and palaeomagnetic age datum ODP Hole 647A 32, 33,34 233–235, 237–239 ODP Hole 711A 100, 101, 103 Magnetic Reversal Polarity Timescale Fig.10 outer Great Barrier Reef 287, 288 opposite page 56 Pringle Falls 266, 268 biostratigraphy Stirone section 312, 313, 314, 315 Cretaceous 327–328 Tibetian Plateau 156 ODP Hole 647A 34–38, 39–47, 48–49 AMS see anisotropy of magnetic susceptibility ODP Hole 711A 105–206 analysis methods, magnetic cyclostratigraphy 329–330 Palaeogene 113–114, 121 anhysteretic remanent magnetization 6–7, 15, 16,18 Permian, Mid 376–377, 389–390 as palaeoclimate proxy 326 Pleistocene 311, 313, 316 Cretaceous 330, 331–337 biotite-rich layer 112, 123 Holocene 248, 252, 254 Blake event 262 Permian 378 Blake excursion 288, 289 Pliocene–Pleistocene 309, 316 block-floating model 169 anisotropic behaviour 294, 346 Bond cycle 367 anisotropy in geomagnetic trajectories 303, 306 bootstrap method 157, 159 anisotropy of magnetic susceptibility 6, 262 Brazilian lavas, virtual geomagnetic pole paths anisotropy of magnetic susceptibility in rhythmites 293–306 355–370 Brunhes Chron correlation 273–274, 275 data and methods 358, 360 Brunhes Chron excursion 288 sediment transport 357 bulk low-field mass specific magnetic tensor axes 360, 364 susceptibility 341, 343 anoxic conditions 321 Antarctic glaciation 98–99 calcarenite 312, 316, 319, 320 Apache Mountains sections 377, 379, 384, 385, 387–390 calcite compensation depth 97, 98, 107 Apennines (Northern), cyclostratigraphy 309–321 Capitanian, global stratotype 376, 384, 385, 387, Apparent Polar Wander Path 6 390, 392 Ar/Ar date 275, 288, 294 carbonate 107, 112, 343 archives, Lake Kalimpaa 247 carbonate cyclostratigraphy 309 ARM see anhysteretic remanent magnetization carbonate platforms, cyclicity 325–329, 332–338 astrochronology 328 carbonate sediments, magnetostratigraphy 280, 282 astronomical calibration 368, 370, 379 carbonate–carbonate-free correlation 32, 68, 69, 71, 72 396 INDEX carbonates, pelagic 82, 112–113, 116, 118, 119–121 data analysis, magnetostratigraphy 196–197 characteristic remanent magnetization (ChRM) 3 dating and geomagnetics 2,3–6,8 Guide Basin 137, 138, 140 see also palaeomagnetic Jiuquan Basin 177–178, 180 Day plot 254, 265, 266 Lake Kalimpaa 248 debris flow 163, 166, 167 Monte Cagnero 83, 87, 89, 100, 103, 105 declination 8, 21, 22–23, 24, 196 Nankai Trough 192–193, 195–199, 223, 226, 236, and age 185, 186 240–241 Lake Kalimpaa 252, 255, 256 ODP Hole 647A 34 magma flows 296 outer Great Barrier Reef 287, 289 outer Great Barrier Reef 287, 288–289 Pringle Falls 265–266 Pringle Falls 67–269, 270–271 rhythmites 356, 360 deep-sea sediments, magnetostratigraphy 13–26 Stirone section 312, 313 deformation and magnetostratigraphy 149–169 Tibetian Plateau 157–158 deformation rates, Quaternary 173 chemical remanent magnetization 3 deformation, timing of 241 chemoherm 311, 312, 318, 319 Delaware Mountains 377, 392 Chico Canyon 326–327, 331–333 demagnetization 18,20 ChRM see characteristic remanent magnetization demagnetization experiments 197–199, 265–268 chronology, magnetism and age 280 denudation rate 146 chronology, radiocarbon 250, 252–253 deposition period, rhythmites 369 chrons 3–4, 273–275 depositional cyclicity, anhysteretic remanent ODP Hole 647A 50–65 magnetization 336–337 chronstratigraphy and magnetostratigraphy depositional environment susceptibility 379 Guide Basin 135, 145 climate and geology 247–248, 326 Jiuquan Basin 181 climate cycles in susceptibility values 343–346, depositional hiatus, Stirone section 321 348, 378 depth scale 20, 22 climate cycles, encoding 320–321 detrital component 378, 379, 380, 387, 389 climate proxy 8, 309, 326–327, 341–342, 370, 379 detrital remanent magnetization 3 climate, Cenozoic 13 diagenesis 6, 321, 381 Eocene–Oligocene 79, 81, 92, 97–99 and magnetic susceptibility 344 climate-driven cycles 351 diamagnetism 379, 384 coal 152 diatomaceous sediments 263, 266, 275 coercivity 196 diatoms, ODP Hole 647A 34, 49,65 Lake Kalimpaa 250, 254 dinocyst marker species 43–44,56 outer Great Barrier Reef 282, 283 dinoflagellate cysts Pringle Falls 264–265 ODP Hole 647A 34 Colleen Canyon section 383, 385–387, 392 Umbria–Marche 113, 116, 118–120, 121, 128 collision, India–Asia 8, 151, 152, 166, 167, 168, 173 dipolar field 294, 303 collision, Proterozoic 152 dipole field, diminution 274–275 condensed sequence 325, 337, 348, 351 directional records, polarity excursions 262 Contessa, pelagic succession 112–117, 119, 121 drilling-induced magnetization 197, 199 cooling 81, 151 drilling-induced remagnetization 34 coral reef 280 dropstones, Permo-Carboniferous 357, 358, 359 coring, disturbance 196–197 dynamo model 294 correlation, ODP Hole 711A to GPTS 106 couplet thickness 358, 361, 362, 370 earthquakes 191–192, 193 Cretaceous–Palaeogene boundary 117, 344 eccentricity 7, 326, 367, 368, 387, 388 integrated chronostratigraphy 111 orbital 335, 337, 338 crust, flow 151 eccentricity cycle 72 crust-floating model 167–169 Ordovician 342, 347, 348 Cupido Formation, magnetic cyclostratigraphy identified at outcrop 350, 351 325–338 Permian 360, 363, 379, 392 analysis methods 329–330 Pliocene–Pleistocene 315, 317, 320 anhysteretic remanent magnetization 331–337 El Nino Southern Oscillation 245 magnetic mineralogy 330–331 environment proxy 326, 333–335, 338, 356, 366 sample collection 329 see also aeolian and climate stratigraphy 326–328, 329 environmental magnetism 6–7 time series methods 330 Eocene Thermal Maximum 73 Curie point 280, 282, 287 Eocene–Oligocene boundary 81–82, 89, Curie temperatire 264, 265, 282, 285 90, 98, 107 determination 199, 223–224, 225, 227 North Altantic 31, 35, 57, 71–72 cyanobacteria 343 Eocene–Oligocene Climatic Optimum Fig.
Recommended publications
  • Cuatrociénegas Basin, Mexico
    Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrociénegas Basin, Mexico B.D. Wolaver1,*, L.J. Crossey2,*, K.E. Karlstrom2,*, J.L. Banner3,*, M.B. Cardenas3,*, C. Gutiérrez Ojeda4,*, and J.M. Sharp, Jr.3,* 1Bureau of Economic Geology, University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, USA 2Department of Earth and Planetary Sciences, University of New Mexico, MSCO3-2040, 1 University of New Mexico, Albuquerque, New Mexico 87131, USA 3Department of Geological Sciences, University of Texas at Austin, 1 University Station, Austin, Texas 78712-0254, USA 4Instituto Mexicano de Tecnología del Agua (IMTA), Paseo Cuauhnáhuac 8532, Colonia Progreso, 62550 Jiutepec, Morelos, México ABSTRACT mantle-derived He (to 23% of the total He) species (Hendrickson et al., 2008; Fig. 2). ≤ –1 and CO2 (pCO2 10 atm). Mantle degas- Springs have varied spatial distribution and geo- He, C, and Sr isotopes are used to infer sing is compatible with the thinned North chemistry. Spring vents are often obscured by spring sources in a water-stressed area. American lithosphere, as shown in tomo- valley-fi ll alluvium, but high-discharge springs Spring-water origins and pathways in the graphic images. Sr isotopes in both Cuatro- generally issue directly from fractures in Creta- Cuatrociénegas Basin are revealed by linking ciénegas Basin springs and spring-deposited ceous carbonate rocks. Other springs are located structure and geochemistry via regionally travertine (87Sr/86Sr = 0.707428–0.707468) at the base of alluvial fans (Wolaver and Diehl, extensive fault networks. This study presents indicate that carbonate rocks of the regional 2011).
    [Show full text]
  • The Planktonic Foraminifera of the Jurassic. Part III: Annotated Historical Review and References
    Swiss J Palaeontol (2017) 136:273–285 DOI 10.1007/s13358-017-0130-0 The planktonic foraminifera of the Jurassic. Part III: annotated historical review and references Felix M. Gradstein1,2 Received: 21 February 2017 / Accepted: 3 April 2017 / Published online: 7 July 2017 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2017 Abstract Over 70 publications on Jurassic planktonic With few exceptions, Jurassic planktonic foraminifera foraminifera, particularly by East and West European and publications based on thin-sections are not covered in this Canadian micropalaeontologists, are summarized and review. Emphasis is only on thin-section studies that had briefly annotated. It provides an annotated historic over- impact on our understanding of Jurassic planktonic for- view for this poorly understood group of microfossils, aminifera. By the same token, microfossil casts do not going back to 1881 when Haeusler described Globigerina allow study of the taxonomically important wall structure helvetojurassica from the Birmenstorfer Schichten of and sculpture; reference to such studies is limited to few of Oxfordian age in Canton Aargau, Switzerland. historic interest. The first four, presumably planktonic foraminiferal spe- Keywords Jurassic Á Planktonic foraminifera Á Annotated cies from Jurassic strata, were described in the second half of historical review 1881–2015 the nineteenth century: Globigerina liasina from the Middle Lias of France (Terquem and Berthelin 1875), G. helveto- jurassica from the Early Oxfordian of Switzerland (Haeusler Annotated historical overview 1881, 1890) and G. oolithica and G. lobata from the Bajocian of France (Terquem 1883). Some descriptions were from Jurassic planktonic foraminifera have been studied since the internal moulds. It was not until 1958 (see below) that more second half of the nineteen’s century, but it was not until after attention was focused on the occurrences of early planktonic the Second World War that micropalaeontological studies foraminifera, with emphasis on free specimens.
    [Show full text]
  • Planktonic Foraminifera) from the Middle- Upper Eocene of Jabal Hafit, United Arab Emirates
    Open access e-Journal Earth Science India eISSN: 0974 – 8350 Vol. 11 (II), April, 2018, pp. 122 - 132 http://www.earthscienceindia.info/ Hantkeninidae (Planktonic Foraminifera) from the Middle- Upper Eocene of Jabal Hafit, United Arab Emirates Haidar Salim Anan Gaza P. O. Box 1126, Palestine Email: [email protected] ABSTRACT Six species of the planktonic foraminiferal Family Hantkeninidae belonging to the genera namely Cribrohantkenina and Hantkenina are recorded and described from the Middle- and Upper Eocene succession of Jabal Hafit, Al Ain area, United Arab Emirates. The species include Cribrohantkenina inflata, Hantkenina alabamensis, H. compressa, H. australis, H. liebusi and H. primitiva. The three species of Hantkenina named last are recorded for the first time from the UAE. Keywords: Middle Eocene, Upper Eocene, Hantkeninidae species, United Arab Emirates INTRODUCTION The species of the genera Cribrohantkenina and Hantkenina have a worldwide distribution encircling low and mid-latitudes. The appearance of the genus Hantkenina at 49 Ma corresponds with the Early/Middle Eocene boundary, and their extinction at 33.7 Ma denotes the Eocene/Oligocene boundary, while the genus Cribrohantkenina appears only at the Late Eocene (36. 4 Ma-34. 3 Ma) and its extinction denotes the Eocene/Oligocene boundary. Pearson (1993) noted that the genus Hantkenina have a rounded periphery and more globose chambers (e.g. H. alabamensis) and sometimes areal apertures on the chamber face around the primer aperture (=Cribrohantkenina). Coxall et al. (2003); Coxall and Pearson (2006); and Rögl and Egger (2010) noted that the genus Hantkenina evolved gradually from the genus Clavigerinella in the earliest Middle Eocene, contrary to the long- held view that it is related to the genus Pseudohastigerina evolved from Globanomalina luxorensis (Nakkady) in the earliest Early Eocene (base of Zone E2) by the development of a symmetrical umbilical aperture and slightly asymmetrical to fully planispiral test as are the result of changes in the timing of the development processes.
    [Show full text]
  • A Palaeobiological Window Into the Lower Cretaceous Cupido Formation: Puerto México Section, Nuevo Leon, Mexico
    Carnets Geol. 18 (8) E-ISSN 1634-0744 DOI 10.4267/2042/68182 A palaeobiological window into the Lower Cretaceous Cupido Formation: Puerto México section, Nuevo Leon, Mexico Felipe TORRES DE LA CRUZ 1 Elizabeth CHACÓN-BACA 1, 2 Yesica Edith GÓMEZ-MANCHA 1 Tomás COSSÍO-TORRES 1 Abstract: A rich geobiological record of Cretaceous biotic and abiotic interactions around the proto- Gulf of Mexico has been preserved in the massive Cupido carbonate platform, i.e., in a sedimentary se- quence that represents a depositional period of approximately 15 Myr. This work documents lateral fa- cies variation on a dip slope reef from a new outcrop in the upper part of the Cupido Formation in the state of Nuevo Leon, Mexico. The measured transect is correlated with a stratigraphic column logged in a nearby section. The preserved fossil biota represents marginal reef facies dominated by abundant rudist shells such as Douvillelia skeltoni, Toucasia sp., Offneria sp., and Amphitrocoelus sp. associated with relatively large colonial corals (with diameters up to 25 cm) like Stelidioseris sp. and to a lesser extent, with stromatoporoids. Benthic foraminifers (miliolids and textularids) with associated dasycla- dalean algae such as Salpingorella sp. and Terquemella spp. dominate the microfossiliferous content in wackestones to packstones. This facies is overlain by a thin (15-30 cm) stromatolite horizon at the upper end of the measured section. This locality represents a new paleobiological and taphonomic win- dow into one of the most extensive carbonate platform system developed along the margin of the Gulf of Mexico during the Cretaceous. Key-words: • Cretaceous; • Cupido Formation; • Puerto Mexico; • rudists; • corals; • stromatoporoids Citation: TORRES DE LA CRUZ F., CHACÓN-BACA E., GÓMEZ-MANCHA Y.E.
    [Show full text]
  • Origin and Morphology of the Eocene Planktonic Foraminifer Hantkenina
    Journal of Foraminiferal Research, v. 33, no. 3, p. 237—261, July 2003 ORIGIN AND MORPHOLOGY OF THE EOCENE PLANKTONIC FORAMINIFER HANTKENINA HELEN K. COXALL,1 BRIAN T. HUBER,2 AND PAUL N. PEARSON3 ABSTRACT tion, in Pearson, 1993), intimating that the evolution of Hantkenina involved gradual morphological transition. Due Study of the origin and early evolution of the tubu- to the scarcity of Hantkenina near its first appearance level lospine-bearing planktonic foraminiferal genus Hant- and a shortage of suitable stratigraphic records of appropri- kenina reveals that it evolved gradually from the clavate ate age, these assertions have been difficult to substantiate species Clavigerinella eocanica in the earliest middle Eo- and the details of the origination and probable ancestor have cene and is unrelated to the genus Pseudohastigerina. not been satisfactorily demonstrated. The major hypotheses Clavigerinella eocanica and the lower middle Eocene that have been proposed to explain Hantkenina phylogeny species Hantkenina nuttalli share many morphologic fea- are presented in Figure 1. tures and show similar developmental patterns but differ Here we present an investigation into the origin of significantly in these aspects from P. micra. Rare, tran- Hantkenina and its evolutionary relationships with other sitional Clavigerinella-Hantkenina forms from the Hel- Eocene planktonic foraminifera using stratigraphic re- vetikum section of Austria bridge the gap between cla- cords that were unavailable to earlier workers. By using vate and tubulospinose morphologies, providing direct, comparative morphologic observations, ontogenetic mor- stratigraphically-ordered evidence of the evolutionary phometric analysis, stable isotopes, and documenting transition between Hantkenina and Clavigerinella. Cla- rare, transitional hantkeninid material from Austria, we vigerinellid ancestry is traced to a previously unde- demonstrate that Hantkenina is a monophyletic taxon that scribed low-trochospiral species, Parasubbotina eoclava evolved by gradual transition from the genus Clavigeri- sp.
    [Show full text]
  • SEPM Society for Sedimentary Geology
    SEPM Society for Sedimentary Geology 4111 S Darlington Phone: 918-610-3361 Suite 100 Fax: 918-621-1685 Tulsa, Oklahoma 74135 www.sepm.org USA This PDF Content is made available by SEPM—Society for Sedi- mentary Geology for non-commercial use. This file does contain security features to prevent changing, copying items or printing the document. Additional restrictions and information can be found below. ———————–———————————————————- Connect to other SEPM publications below. www.sepm.org to learn more about the Society, membership, conferences and other publications www.sepm.org/bookstore/storehome.htm for purchase other SEPM Book Publications. www.sepmonline.org to access both Book and Journals online. ————————————————–——————————- Copyright not claimed on content prepared by wholly by U.S. government employees within scope of their employment. Individual scientists are granted permission, without fees or fur- ther requests to SEPM, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works. To make unlimited copies of items in SEPM publications for noncommercial use in classrooms to further education and science without fees please contact SEPM. This file may not be posted to any other Web site. SEPM provides this and other forums for the presentation for the of diverse opinions and positions by scientists globally. Ideas in this publications do not necessarily reflect the official position of the Society. CONTROLS ON CYCLOSTRATIGRAPHY OF LOWER CRETACEOUS CARBONATES AND EVAPORITES, CUPIDO AND COAHUILA PLATFORMS, NORTHEASTERN MEXICO CHRISTOPH LEHMANN1*, DAVID A. OSLEGER2, AND ISABEL P. MONTANÄ EZ2 1 Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.
    [Show full text]
  • Sequence Stratigraphy of Lower Cretaceous (Barremian±Albian) Carbonate Platforms of Northeastern Mexico: Regional and Global Correlations
    SEQUENCE STRATIGRAPHY OF LOWER CRETACEOUS (BARREMIAN±ALBIAN) CARBONATE PLATFORMS OF NORTHEASTERN MEXICO: REGIONAL AND GLOBAL CORRELATIONS CHRISTOPH LEHMANN1*, DAVID A. OSLEGER2, AND ISABEL MONTANÄ EZ2 1 Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A. [email protected] 2 Department of Geology, University of California, Davis, California 95616, U.S.A. ABSTRACT: The Lower Cretaceous Cupido and Coahuila platforms of region and provide improved visualization of less well-exposed coeval plat- northeastern Mexico form part of the extensive carbonate platform forms to the north and south. system that surrounded the ancestral Gulf of Mexico. A sequence- Previous work on the Cupido and Coahuila platforms over the last sev- stratigraphic model for these Barremian to Albian platforms was con- eral decades has focused primarily on the lithostratigraphy and biostratig- structed from regional correlations of vertical cycle stacking patterns raphy of formations cropping out in the Sierra Madre Oriental near Saltillo constrained by newly acquired biostratigraphic data and C and Sr and Monterrey (Fig. 1A). Important recent work by Wilson and Ward isotope stratigraphy. The Cupido shelf lagoon (Barremian±Aptian) is (1993) synthesized large-scale depositional patterns of the Cupido and Coa- composed of up to 150 peritidal cycles, which stack into high-frequency huila platforms. The ®rst attempt to place the strata of these two platforms sequences that are correlated across the shelf. Cupido high-frequency into a sequence-stratigraphic framework was by Goldhammer et al. (1991), sequences build into a lower partial composite sequence (Cu1), an over- who distinguished four major ``second-order supersequences'' spanning the lying full composite sequence (Cu2), and the transgressive base of a Middle Jurassic through the Early Cretaceous.
    [Show full text]
  • Mississippi Geology, V
    THE DEPARTMENT OF ENVIRONMENTAL QUALITY • • Office of Geology P. 0. Box 20307 Volume 17 Number 1 Jackson, Mississippi 39289-1307 March 1996 TOWARD A REVISION OF THE GENERALIZED STRATIGRAPHIC COLUMN OF MISSISSIPPI David T . D ock ery III Mississippi Office of Geology INTRODUCTION The state's Precambrian subsurface stratigraphy is from Thomas and Osborne (1987), and the Cambrian-Permsylva­ The stratigraphic columns presented here are a more nian section is modified from Dockery ( 1981) . References informative revision on the state's 1981 column published as for the Cambrian-Ordovician section of the 1981 column one sheet (Dockery, 1981). This revision wasmade forafuture include Mellen (1974, 1977); this stratigraphy is also found in text on " An Overview of Mississippi's Geology" and follows Henderson ( 1991 ). the general format and stratigraphy as pub}jshed in the Corre­ When subdivided in oil test records, the state's Ordovi­ lation of Stratigraphic Units of North America (COSUNA) ciansection generally contains the Knox Dolomite, the Stones charts (see Thomas and Osborne, 1987, and Dockery, 1988). River Group (see AJberstadt and Repetski, 1989), and the The following discussion is a brief background, giving the Nashville Group, while the Silurian contains the Wayne major sources used in the chart preparations. Suggestions for Group and Brownsport Formation. The Termessee Valley improvements may be directed to the author. Autl10rity's (1977) description of a 1,326-foot core hole at their proposed Yellow Creek Nuclear Plant site in northeast­ em Tishomingo Catmty greatly refined the stratigraphy be­ PALEOZOJCSTRATJGRAPffiCUNITS tween the Lower Ordovician Knox Dolomite and the Ross Formation of Devonian age.
    [Show full text]
  • Late Eocene Brachiopods from the Euganean Hills (NE Italy)
    0012-9402/05/010103-9 Eclogae geol. Helv. 98 (2005) 103–111 DOI 10.1007/s00015-005-1145-x Birkhäuser Verlag, Basel, 2005 Late Eocene brachiopods from the Euganean Hills (NE Italy) MARIA ALEKSANDRA BITNER1 & IGINIO DIENI2 Key words: Brachiopoda, new taxa, Upper Eocene (Priabonian), Euganean Hills, Italy Parole chiave: Brachiopodi, nuovi taxa, Eocene superiore (Priaboniano), Colli Euganei, Italia ABSTRACT RIASSUNTO Five species belonging to five genera and an unidentified rhynchonellid have Viene descritta un’associazione di brachiopodi del Priaboniano superiore rac- been recognised in a Late Eocene (Priabonian) brachiopod assemblage from colta entro marne contenenti lave a cuscini di composizione basaltica affio- Castelnuovo in the Euganean Hills, north-eastern Italy. One genus and two ranti nei dintorni di Castelnuovo nei Colli Euganei, in provincia di Padova species are new, i. e. Venetocrania euganea gen. et sp. nov. and “Terebratula” (Italia NE). Essa è costituita da cinque specie appartenenti ad altrettanti gene- italica sp. nov. Orthothyris pectinoides (VON KOENEN 1894) is recorded for the ri e da un rhynchonellide non identificato. Un genere e due specie, Venetocra- first time from Italy. The other species are Terebratulina sp. cf. T. tenuistriata nia euganea gen. nov., sp. nov. e “Terebratula” italica sp. nov., sono di nuova (LEYMERIE 1846) and Lacazella mediterranea (RISSO 1826), both already istituzione. Una specie, Orthothyris pectinoides (VON KOENEN 1894), viene known from the Italian Eocene. trovata per la prima volta in Italia, mentre le altre due specie, Terebratulina sp. cf. T. tenuistriata (LEYMERIE 1846) e Lacazella mediterranea (RISSO 1826), erano già state segnalate nell’Eocene italiano. 1. Introduction Since brachiopods are relatively rare in the Eocene of Europe, & Dieni, in press), this paper marks the continuation of the their occurrence is always of particular interest.
    [Show full text]
  • Effects of the Oligocene Climatic Events on the Foraminiferal Record from Fuente Caldera Section (Spain, Western Tethys)
    Palaeogeography, Palaeoclimatology, Palaeoecology 269 (2008) 94–102 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Effects of the Oligocene climatic events on the foraminiferal record from Fuente Caldera section (Spain, western Tethys) L. Alegret a,⁎, L.E. Cruz a,b, R. Fenero a, E. Molina a, S. Ortiz a,c, E. Thomas d,e a Dpto. Ciencias de la Tierra (Paleontología), Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain b Escuela de Geología, Universidad Industrial de Santander. AA 678 Bucaramanga, Colombia c Department of Earth Sciences, University College London, WC1E 6BT London, UK d Center for the Study of Global Change, Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109, USA e Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459-0139, USA article info abstract Article history: An expanded succession of upper Priabonian (upper Eocene) to Chattian (upper Oligocene) hemipelagic Received 31 January 2008 marls interbedded with turbiditic sandstone layers is present in the Spanish Fuente Caldera section (Subbetic Received in revised form 4 July 2008 Zone, western Tethys). We analyzed foraminifera from this section quantitatively, with emphasis on Accepted 9 August 2008 biostratigraphy and paleoecology. Benthic foraminifera indicate an upper to possibly upper–middle bathyal depth of deposition for most of the Keywords: studied section, with paleobathymetric analysis made difficult because of the common presence of shallow- Oligocene Foraminifera water taxa, some reworked by turbidites and others epiphytic taxa, which may have been transported by Biostratigraphy turbidites or by floating plant material. We identified three major biotic and paleoenvironmental events.
    [Show full text]
  • Geology of the Basement Below the Decollement Surface, Sierra De Catorce, San Luis Potosi, Mexico
    Geological Society of America Special Paper 340 1999 Geology of the basement below the decollement surface, Sierra de Catorce, San Luis Potosi, Mexico - Miguel Franco-Rubio Facultad de Ingenieria, Universidad Autdnoma de Chihuahua, Apartado Postal 1552, Sucursal C, C. I? 31260, Chihuahua, Chihuahua, MLxico ABSTRACT The Sierra de Catorce, one of the most important silver producers in the world, straddles the transitional boundary between the Mesa Central to the west and the Sierra Madre Oriental to the east. Stratigraphically, it consists mainly of marine car- bonate rocks that range in age from Late Jurassic to Late Cretaceous. These rocks are grouped, from top to bottom, into the following lithological units: Caracol, Indidura, Cuesta del Cura, La Peiia, Cupido, Taraises, La Caja, and Zuloaga Forma- tions. Underlying this carbonate rock sequence, and separated from it by a structural discontinuity, is a very thick transgressive section of redbeds that is stratigraphically correlatable to the La Joya Formation. Its age is probably early Late Jurassic. The La Joya Formation redbeds unconformably overlie both the Triassic Huizachal Forma- tion and the upper Paleozoic green beds, which are correlated with the Guacamaya Formation of the Huizachal-Peregrina anticlinorium. This sierra is part of the Mexi- can fold and thrust belt, which is believed to connect to the Cordilleran orogenic belt. This tectonic feature extends along the western parts of North and South America. The evolution of this belt is ascribed to the gradual convergence of the Pacific Ocean and the North and South American plates. INTRODUCTION boundary between two physiographic provinces: the Mesa Central to the west, which is considered a major but little The Sierra de Catorce area, is north of the Mexican state recognized part of the Basin and Range province (Henry and of San Luis Potosi; it is limited by long 100'40' and 101'00' W Aranda-Gdmez, 1992; Stewart, 1978), and the Sierra Madre and lat 23'22' and 23'52' N, and covers -1925 km2.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]