Plague (Yersinia Pestis)

Total Page:16

File Type:pdf, Size:1020Kb

Plague (Yersinia Pestis) Plague (Yersinia pestis) Septicemic plague: septicemia with or without an 1. Case Definition evident bubo 1.1 Confirmed Case: Primary pneumonic plague: resulting from Clinical evidence of illness* with laboratory inhalation of infectious droplets confirmation of infection: Secondary pneumonic plague: pneumonia Isolation of Yersinia pestis from body resulting from hematogenous spread in bubonic or fluids (e.g., fluid from buboes, throat septicemic cases swab, sputum, blood) OR Pharyngeal plague: pharyngitis and cervical A significant (i.e., fourfold or greater) rise lymphadenitis resulting from exposure to larger in serum antibody titre to Y. pestis fraction infectious droplets or ingestion of infected tissues 1 (F1) antigen by enzyme immunoassay (1). (EIA) or passive hemagglutination/inhibition titre (1). 2. Reporting and Other Requirements 1.2 Probable Case: Laboratory: Clinical evidence of illness* with one or more of All positive laboratory results for Yersinia the following: pestis are reportable to the Public Health Demonstration of elevated serum antibody Surveillance Unit by secure fax (204-948- titre(s) to Y. pestis F1 antigen (without 3044). A phone report must be made to a documented significant [i.e., fourfold or Medical Officer of Health at 204-788- greater] change) in a patient with no 8666 on the same day the result is history of plague immunization obtained, in addition to the standard OR surveillance reporting by fax. Demonstration of Y. pestis F1 antigen by immunofluorescence Manitoba clinical laboratories are required OR to submit residual specimens or isolate Detection of Y. pestis nucleic acid sub-cultures from individuals who tested OR positive for Yersinia pestis to Cadham > 1:10 passive hemagglutination/inhibition Provincial Laboratory (CPL) (204-945- titre in a single serum sample in a patient 6123) within 48 hours of report. with no history of vaccination or previous Submitting laboratories must notify CPL infection of the shipment PRIOR to submission. OR Health Care Professional: Detection of Y. pestis antibody by EIA (1). Probable (clinical) cases of plague are *Plague is characterized by fever, chills, reportable to the Public Health headache, malaise, prostration and Surveillance Unit during regular hours leukocytosis, and is manifest in one or more of (8:30 a.m. to 4:30 p.m.) by telephone the following principal forms: (204-788-6736) AND by secure fax (204- 948-3044) using the Clinical Notification Bubonic plague: regional lymphadenitis of Reportable Diseases and Conditions Communicable Disease Management Protocol – Plague July 2018 1 form MHSU-0013 10 cm in diameter (4). Bacteremia is common in http://www.gov.mb.ca/health/publichealth/ patients with bubonic plague (5). High levels of cdc/protocol/mhsu_0013.pdf on the same bacteremia are often associated with day that they are identified. After hours gastrointestinal symptoms such as nausea, telephone reporting is to the Medical vomiting, abdominal pain and diarrhea (5). Officer of Health on call at (204-788- Untreated bubonic plague has a case fatality of 50- 8666) with a subsequent faxed report form 60% (3). Bubonic plague resulting from the bite MHSU-0013. of an infected flea, accounts for 80-85% of plague cases reported in the United States (6). Regional Public Health or First Nations Inuit Health Branch (FNIHB): Septicemic Plague: The septicemic form of plague can occur subsequent to bubonic plague or Once the case has been referred to without prior lymphadenopathy (primary Regional Public Health or FNIHB, the septicemic plague) (3). The illness progresses Communicable Disease Control rapidly, leading to overwhelming sepsis and organ Investigation Form MHSU-0002 failure within a few days (2). Septicemic plague http://www.gov.mb.ca/health/publichealth/ may be complicated by bleeding and gangrene, cdc/protocol/mhsu_0002.pdf should be especially of the fingers, toes and nose (7). Some completed and returned to the Public patients have gastrointestinal symptoms as well Health Surveillance Unit by secure fax (2). Untreated primary septicemic plague is (204-948-3044). almost invariably fatal (3). Septicemic plague accounts for approximately 10% of plague cases 3. Clinical Presentation/Natural reported in the United States (6). History Pneumonic Plague: Pneumonic plague exists in Plague takes several different clinical forms, two forms, primary and secondary (2). Primary depending in part on the route of exposure (2). pneumonic plague results from the direct Initial signs and symptoms for all presentations inhalation of bacteria into the lungs (2). Patients may be nonspecific, with fever, chills, malaise, experience sudden onset of fever, chills, headache, myalgia, nausea, prostration, sore throat, and malaise, and rapidly advancing tachypnea, headache (2). Naturally acquired plague usually dyspnea, hypoxia, chest pain, cough, hemoptysis, takes the form of bubonic plague (3). The global and general signs of toxemia (2). Primary distribution of Y. pestis, ease for its mass pneumonic plague accounts for approximately 2% production, and aerosolized dissemination means of reported plague cases in the United States (8). it is considered to have a high potential for Secondary pneumonic plague is the more common biological weapon use (2, 4). form of pneumonic plague and arises through hematogenous spread of bacteria to the lungs from Bubonic Plague: Bubonic plague results from a bubo or other source (2). Fatality rates are cutaneous exposure (e.g., flea bite) and is influenced by time to initiation of antibiotics, characterized by the sudden onset of high fever, access to advanced supportive care and the dose of chills, weakness and headache (2). A bubo or inhaled bacilli (9). Untreated pneumonic plague is swelling of regional lymph nodes becomes almost always fatal, and mortality is very high in apparent in the groin, axilla, or neck within the persons when treatment is delayed beyond 24 first day (2). The size may vary from one cm to hours after symptom onset (2). Communicable Disease Management Protocol – Plague July 2018 2 Other Forms of Plague: Pharyngeal plague is a (so the dog could appear clinically normal) and rare presentation resembling acute tonsillitis (2). transmission would mainly be via fleas that they Plague meningitis is a rare complication of Y. carry (12). Cases of plague have been reported in pestis (2). people who have butchered or skinned an animal (13). 4. Etiology 5.3 Occurrence: Plague is caused by the gram-negative General: Plague is a disease of poverty in Africa, coccobacillus, Yersinia pestis (3). South America, and India, where commensal rodents are the animal reservoir (10). In other 5. Epidemiology endemic regions such as Peru and the western 5.1 Reservoir and Source: United States, plague is a sporadic disease associated with outdoor occupations and contact Humans are incidental hosts or “dead-end” hosts with infected domestic animals (cats and dogs) (2). The principal animal reservoir differs from (10). Plague does occur in Asia, but is restricted region to region (10). Wild rodents are the natural to breeders and hunters since the reservoir consists vertebrate hosts of plague and maintain the natural mainly of gerbils in the steppe and marmots in the plague cycle by serving as sources of infection mountains (2). Madagascar is the most seriously and amplification for the flea vectors of the affected country in the world (10). Most of the disease (3). Plague bacilli can survive in the soil cases reported in a large 2017 Madagascar plague for prolonged periods and might be a source of outbreak were pneumonic plague (14). Since the infection for rodents (2). 1990s, most human cases have occurred in Africa 5.2 Transmission: (11). Plague is transmitted between animals and Canada: Human cases of plague are very rare in humans by the bite of infected fleas, direct contact Canada with the last case reported in 1939 (15). with infectious body fluids or contaminated Manitoba: No cases of human plague were materials of infected animals or humans, and reported in Manitoba since reporting became inhalation of infected respiratory droplets from a available in 1993. patient with pneumonic plague (11). Person-to- person transmission of pneumonic plague requires 5.4 Incubation: close contact, typically with a patient who is in the The incubation period is usually two to seven late stages of infection and coughing copious days, but can be as short as one day for primary amounts of bloody sputum (2). Human cases have pneumonic plague (2). been linked to handling infected animals and domestic pets, particularly house cats and dogs, 5.5 Risk Factors for Infection: which can carry Y. pestis-infected wild rodent Within endemic areas, elevated plague risk is fleas into homes (3, 8). Domestic cats that eat associated with close contact with rodents and infected rodents are particularly susceptible to their feline and canine predators, harbouring food plague (12) and pharyngeal infection in cats can sources for wild rodents in the vicinity of homes be transmitted directly to humans through and failure to control fleas on pet cats and dogs respiratory droplets, causing primary pneumonic (2). plague (2). Dogs are less susceptible to the plague Communicable Disease Management Protocol – Plague July 2018 3 5.6 Host Susceptibility and Resistance: and effective antimicrobial therapy started immediately after obtaining diagnostic Humans are universally susceptible (3). Immunity specimens (2). after recovery is relative; it may not protect
Recommended publications
  • Plague Manual for Investigation
    Plague Summary Plague is a flea-transmitted bacterial infection of rodents caused by Yersinia pestis. Fleas incidentally transmit the infection to humans and other susceptible mammalian hosts. Humans may also contract the disease from direct contact with an infected animal. The most common clinical form is acute regional lymphadenitis, called bubonic plague. Less common clinical forms include septicemic, pneumonic, and meningeal plague. Pneumonic plague can be spread from person to person via airborne transmission, potentially leading to epidemics of primary pneumonic plague. Plague is immediately reportable to the New Mexico Department of Health. Plague is treatable with antibiotics, but has a high fatality rate with inadequate or delayed treatment. Plague preventive measures include: isolation of pneumonic plague patients; prophylactic treatment of pneumonic case contacts; avoiding contact with rodents and their fleas; reducing rodent harborage around the home; using flea control on pets; and, preventing pets from hunting. Agent Plague is caused by Yersinia pestis, a gram-negative, bi-polar staining, non-motile, non-spore forming coccobacillus. Transmission Reservoir: Wild rodents (especially ground squirrels) are the natural vertebrate reservoir of plague. Lagomorphs (rabbits and hares), wild carnivores, and domestic cats may also be a source of infection to humans. Vector: In New Mexico, the rock squirrel flea, Oropsylla montana, is the most important vector of plague for humans. Many more flea species are involved in the transmission of sylvatic (wildlife) plague. Mode of Transmission: Most humans acquire plague through the bites of infected fleas. Fleas can be carried into the home by pet dogs and cats, and may be abundant in woodpiles or burrows where peridomestic rodents such as rock squirrels (Spermophilus variegatus) have succumbed to plague infection.
    [Show full text]
  • Fournier's Gangrene Caused by Listeria Monocytogenes As
    CASE REPORT Fournier’s gangrene caused by Listeria monocytogenes as the primary organism Sayaka Asahata MD1, Yuji Hirai MD PhD1, Yusuke Ainoda MD PhD1, Takahiro Fujita MD1, Yumiko Okada DVM PhD2, Ken Kikuchi MD PhD1 S Asahata, Y Hirai, Y Ainoda, T Fujita, Y Okada, K Kikuchi. Une gangrène de Fournier causée par le Listeria Fournier’s gangrene caused by Listeria monocytogenes as the monocytogenes comme organisme primaire primary organism. Can J Infect Dis Med Microbiol 2015;26(1):44-46. Un homme de 70 ans ayant des antécédents de cancer de la langue s’est présenté avec une gangrène de Fournier causée par un Listeria A 70-year-old man with a history of tongue cancer presented with monocytogenes de sérotype 4b. Le débridement chirurgical a révélé un Fournier’s gangrene caused by Listeria monocytogenes serotype 4b. adénocarcinome rectal non diagnostiqué. Le patient n’avait pas Surgical debridement revealed undiagnosed rectal adenocarcinoma. d’antécédents alimentaires ou de voyage apparents, mais a déclaré The patient did not have an apparent dietary or travel history but consommer des sashimis (poisson cru) tous les jours. reported daily consumption of sashimi (raw fish). L’âge avancé et l’immunodéficience causée par l’adénocarcinome rec- Old age and immunodeficiency due to rectal adenocarcinoma may tal ont peut-être favorisé l’invasion directe du L monocytogenes par la have supported the direct invasion of L monocytogenes from the tumeur. Il s’agit du premier cas déclaré de gangrène de Fournier tumour. The present article describes the first reported case of attribuable au L monocytogenes. Les auteurs proposent d’inclure la con- Fournier’s gangrene caused by L monocytogenes.
    [Show full text]
  • Kellie ID Emergencies.Pptx
    4/24/11 ID Alert! recognizing rapidly fatal infections Susan M. Kellie, MD, MPH Professor of Medicine Division of Infectious Diseases, UNMSOM Hospital Epidemiologist UNMHSC and NMVAHCS Fever and…. Rash and altered mental status Rash Muscle pain Lymphadenopathy Hypotension Shortness of breath Recent travel Abdominal pain and diarrhea Case 1. The cross-country trucker A 30 year-old trucker driving from Oklahoma to California is hospitalized in Deming with fever and headache He is treated with broad-spectrum antibiotics, but deteriorates with obtundation, low platelet count, and a centrifugal petechial rash and is transferred to UNMH 1 4/24/11 What is your diagnosis? What is the differential diagnosis of fever and headache with petechial rash? (in the US) Tickborne rickettsioses ◦ RMSF Bacteria ◦ Neisseria meningitidis Key diagnosis in this case: “doxycycline deficiency” Key vector-borne rickettsioses treated with doxycycline: RMSF-case-fatality 5-10% ◦ Fever, nausea, vomiting, myalgia, anorexia and headache ◦ Maculopapular rash progresses to petechial after 2-4 days of fever ◦ Occasionally without rash Human granulocytotropic anaplasmosis (HGA): case-fatality<1% Human monocytotropic ehrlichiosis (HME): case fatality 2-3% 2 4/24/11 Lab clues in rickettsioses The total white blood cell (WBC) count is typicallynormal in patients with RMSF, but increased numbers of immature bands are generally observed. Thrombocytopenia, mild elevations in hepatic transaminases, and hyponatremia might be observed with RMSF whereas leukopenia
    [Show full text]
  • Diagnostic Code Descriptions (ICD9)
    INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS
    [Show full text]
  • Plague (Yersinia Pestis)
    Division of Disease Control What Do I Need To Know? Plague (Yersinia pestis) What is plague? Plague is an infectious disease of animals and humans caused by the bacterium Yersinia pestis. Y. pestis is found in rodents and their fleas in many areas around the world. There are three types of plague: bubonic plague, septicemic plague and pneumonic plague. Who is at risk for plague? All ages may be at risk for plague. People usually get plague from being bitten by infected rodent fleas or by handling the tissue of infected animals. What are the symptoms of plague? Bubonic plague: Sudden onset of fever, headache, chills, and weakness and one or more swollen and painful lymph nodes (called buboes) typically at the site where the bacteria entered the body. This form usually results from the bite of an infected flea. Septicemic plague: Fever, chills, extreme weakness, abdominal pain, shock, and possibly bleeding into the skin and other organs. Skin and other tissues, especially on fingers, toes, and the nose, may turn black and die. This form usually results from the bites of infected fleas or from handling an infected animal. Pneumonic plague: Fever, headache, weakness, and a rapidly developing pneumonia with shortness of breath, chest pain, cough, and sometimes bloody or watery mucous. Pneumonic plague may develop from inhaling infectious droplets or may develop from untreated bubonic or septicemic plague after the bacteria spread to the lungs. How soon do symptoms appear? Symptoms of bubonic plague usually occur two to eight days after exposure, while symptoms for pneumonic plague can occur one to six days following exposure.
    [Show full text]
  • Early History of Infectious Disease 
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time.
    [Show full text]
  • Plague Fact Sheet Toledo-Lucas County Health Department | Emergency Preparedness
    Plague Fact Sheet Toledo-Lucas County Health Department | Emergency Preparedness What is plague? or body fluids of a plague-infected animal. For Plague is a disease that affects humans and other example, a hunter skinning a rabbit without using mammals. It is caused by the bacterium, Yersinia proper precautions could become infected. This pestis. Humans usually get plague after being form of exposure may result in bubonic plague or bitten by a rodent flea that is carrying the plague septicemic plague. bacterium or by handling an animal infected with plague. Plague is infamous for killing millions of Infectious droplets. When a person had plague people in Europe during the Middle Ages. Today, pneumonia, they may cough droplets containing modern antibiotics are effective in treating plague. the plague bacteria into the air. F these bacteria- Without prompt treatment, the disease can cause containing droplets are breathed in by another serious illness or death. Presently, human plague person the can cause pneumonic plague. This infections continue to occur in the western United typically requires direct and close contact with the States, but significantly more cases occur in parts person with pneumonic plague. Transmission of of Africa and Asia. these droplets is the only way that plague can spread between people. How is plague transmitted? The plague bacteria can be transmitted to humans What are the symptoms of plague? in the following ways: Bubonic plague: Patients develop sudden onset fever, headache, chills, and weakness and one or Flea bites. Plague bacteria are most often more swollen, tender and painful lymph nodes. transmitted by the bite of an infected flea.
    [Show full text]
  • What Is Sepsis?
    What is sepsis? Sepsis is a serious medical condition resulting from an infection. As part of the body’s inflammatory response to fight infection, chemicals are released into the bloodstream. These chemicals can cause blood vessels to leak and clot, meaning organs like the kidneys, lung, and heart will not get enough oxygen. The blood clots can also decrease blood flow to the legs and arms leading to gangrene. There are three stages of sepsis: sepsis, severe sepsis, and ultimately septic shock. In the United States, there are more than one million cases with more than 258,000 deaths per year. More people die from sepsis each year than the combined deaths from prostate cancer, breast cancer, and HIV. More than 50 percent of people who develop the most severe form—septic shock—die. Septic shock is a life-threatening condition that happens when your blood pressure drops to a dangerously low level after an infection. Who is at risk? Anyone can get sepsis, but the elderly, infants, and people with weakened immune systems or chronic illnesses are most at risk. People in healthcare settings after surgery or with invasive central intravenous lines and urinary catheters are also at risk. Any type of infection can lead to sepsis, but sepsis is most often associated with pneumonia, abdominal infections, or kidney infections. What are signs and symptoms of sepsis? The initial symptoms of the first stage of sepsis are: A temperature greater than 101°F or less than 96.8°F A rapid heart rate faster than 90 beats per minute A rapid respiratory rate faster than 20 breaths per minute A change in mental status Additional symptoms may include: • Shivering, paleness, or shortness of breath • Confusion or difficulty waking up • Extreme pain (described as “worst pain ever”) Two or more of the symptoms suggest that someone is becoming septic and needs immediate medical attention.
    [Show full text]
  • Skin Problems 15 Some Skin Problems Are Caused by Diseases Or Irritations That Affect the Skin Only—Such As Ringworm, Diaper Rash, Or Warts
    193 CHAPTER Skin Problems 15 Some skin problems are caused by diseases or irritations that affect the skin only—such as ringworm, diaper rash, or warts. Other skin problems are signs of diseases that affect the whole body—such as the rash of measles or the sore, dry patches of pellagra (malnutrition). Certain kinds of sores or skin conditions may be signs of serious diseases—like tuberculosis, syphilis, leprosy, or HIV infection. This chapter deals only with the more common skin problems in rural areas. However, there are hundreds of diseases of the skin. Some look so much alike that they are hard to tell apart—yet their causes and the specific treatments they require may be quite different. If a skin problem is serious or gets worse in spite of treatment, seek medical help. Many skin problems can be helped by keeping the body clean. Try to wash once a day with mild soap and clean water. If the skin becomes too dry, wash less often and do not use soap every time. Try rubbing petroleum gel (Vaseline), glycerin, or vegetable oils into the skin after bathing. Wear loose cotton clothing. GENERAL RULES FOR TREATING SKIN PROBLEMS Although many skin problems need specific treatment, there are a few general measures that often help: RULE #1 RULE #2 If the affected area ishot and If the affected area itches, painful, or oozes pus, treat it stings, or oozes clear fluid, with heat. Put hot, moist cloths treat it with cold. Put cool, wet on it (hot compresses). cloths on it (cold compresses).
    [Show full text]
  • Leptospirosis and Coinfection: Should We Be Concerned?
    International Journal of Environmental Research and Public Health Review Leptospirosis and Coinfection: Should We Be Concerned? Asmalia Md-Lasim 1,2, Farah Shafawati Mohd-Taib 1,* , Mardani Abdul-Halim 3 , Ahmad Mohiddin Mohd-Ngesom 4 , Sheila Nathan 1 and Shukor Md-Nor 1 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; [email protected] (A.M.-L.); [email protected] (S.N.); [email protected] (S.M.-N.) 2 Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), National Institue of Health (NIH), Ministry of Health, Shah Alam 40170, Selangor, Malaysia 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; [email protected] 4 Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Federal Territory of Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-12-3807701 Abstract: Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, Citation: Md-Lasim, A.; Mohd-Taib, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with F.S.; Abdul-Halim, M.; Mohd-Ngesom, other pathogenic bacteria.
    [Show full text]
  • Circulatory and Lymphatic System Infections 1105
    Chapter 25 | Circulatory and Lymphatic System Infections 1105 Chapter 25 Circulatory and Lymphatic System Infections Figure 25.1 Yellow fever is a viral hemorrhagic disease that can cause liver damage, resulting in jaundice (left) as well as serious and sometimes fatal complications. The virus that causes yellow fever is transmitted through the bite of a biological vector, the Aedes aegypti mosquito (right). (credit left: modification of work by Centers for Disease Control and Prevention; credit right: modification of work by James Gathany, Centers for Disease Control and Prevention) Chapter Outline 25.1 Anatomy of the Circulatory and Lymphatic Systems 25.2 Bacterial Infections of the Circulatory and Lymphatic Systems 25.3 Viral Infections of the Circulatory and Lymphatic Systems 25.4 Parasitic Infections of the Circulatory and Lymphatic Systems Introduction Yellow fever was once common in the southeastern US, with annual outbreaks of more than 25,000 infections in New Orleans in the mid-1800s.[1] In the early 20th century, efforts to eradicate the virus that causes yellow fever were successful thanks to vaccination programs and effective control (mainly through the insecticide dichlorodiphenyltrichloroethane [DDT]) of Aedes aegypti, the mosquito that serves as a vector. Today, the virus has been largely eradicated in North America. Elsewhere, efforts to contain yellow fever have been less successful. Despite mass vaccination campaigns in some regions, the risk for yellow fever epidemics is rising in dense urban cities in Africa and South America.[2] In an increasingly globalized society, yellow fever could easily make a comeback in North America, where A. aegypti is still present.
    [Show full text]
  • 2010-2014 Wildlife Plague Surveillance (PDF)
    Washington State Department of Health Zoonotic Disease Program Plague Wildife Plague Surveillance in Washington State Summary Report, 2010-2014 July 2016 Wildlife Plague Surveillance Partners We wish to acknowledge and thank our surveillance partners for their contributions: Partners Shannon Murphie, Makah Tribe Forestry, Wildlife Division Sandra Celestine, Yakama Nation, Wildife Resource Sean Carrell, Washington State Department of Fish and Wildlife Colin Leingang, JBLM Yakima Training Center, Wildlife Program John Young, U.S. Centers for Disease Control and Prevention, Vector-Borne Infectious Diseases Sarah Bevins, U.S. Department of Agriculture, APHIS WS, National Wildlife Disease Program Wildlife Plague Surveillance in Washington Summary Report, July 2010‐June 2014 Plague surveillance using serological testing of wild carnivores helps to identify areas of plague activity in Washington. This report summarizes wildlife plague surveillance activities and findings from July 2010 through June 2014. July 2016 To obtain copies or for additional information, please contact: Zoonotic Disease Program PO Box 47825 Olympia, Washington 98504‐7825 Phone: 1‐800‐485‐7316 Webpage: www.doh.gov/zoonosescontact For persons with disabilities, the document is also available upon request in other formats. To submit a request, please call 1‐800‐525‐0127 (voice) or 1‐800‐833‐6388 (TTY/TDD). Publication #333‐401 July 2016 John Wiesman Secretary of Health Division of Environmental Public Health Wildlife Plague Surveillance in Washington, 2010-2014 Plague is essentially a disease of rodents caused by the bacterium Yersinia pestis. It can be transmitted to people through bites of infected fleas or from handling an infected animal. The disease can cause serious illness and death when not promptly treated.
    [Show full text]