Plague Surveillance Protocol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plague Manual for Investigation
Plague Summary Plague is a flea-transmitted bacterial infection of rodents caused by Yersinia pestis. Fleas incidentally transmit the infection to humans and other susceptible mammalian hosts. Humans may also contract the disease from direct contact with an infected animal. The most common clinical form is acute regional lymphadenitis, called bubonic plague. Less common clinical forms include septicemic, pneumonic, and meningeal plague. Pneumonic plague can be spread from person to person via airborne transmission, potentially leading to epidemics of primary pneumonic plague. Plague is immediately reportable to the New Mexico Department of Health. Plague is treatable with antibiotics, but has a high fatality rate with inadequate or delayed treatment. Plague preventive measures include: isolation of pneumonic plague patients; prophylactic treatment of pneumonic case contacts; avoiding contact with rodents and their fleas; reducing rodent harborage around the home; using flea control on pets; and, preventing pets from hunting. Agent Plague is caused by Yersinia pestis, a gram-negative, bi-polar staining, non-motile, non-spore forming coccobacillus. Transmission Reservoir: Wild rodents (especially ground squirrels) are the natural vertebrate reservoir of plague. Lagomorphs (rabbits and hares), wild carnivores, and domestic cats may also be a source of infection to humans. Vector: In New Mexico, the rock squirrel flea, Oropsylla montana, is the most important vector of plague for humans. Many more flea species are involved in the transmission of sylvatic (wildlife) plague. Mode of Transmission: Most humans acquire plague through the bites of infected fleas. Fleas can be carried into the home by pet dogs and cats, and may be abundant in woodpiles or burrows where peridomestic rodents such as rock squirrels (Spermophilus variegatus) have succumbed to plague infection. -
Coxiella Burnetii
SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Coxiella burnetii American Society for Microbiology (ASM) Revised March 2016 For latest revision, see web site below: https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Expert: David Welch, Ph.D. Medical Microbiology Consulting Dallas, TX [email protected] ASM Sentinel Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS [email protected] Association of Public Health Peter H. Gilligan, Ph.D. m Laboratories University of North Carolina [email protected] Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic Laboratory at the [email protected] [email protected] University of Iowa [email protected] Larry Gray, Ph.D. Alice Weissfeld, Ph.D. TriHealth Laboratories and Microbiology Specialists Inc. Harvey Holmes, PhD University of Cincinnati College Houston, TX Centers for Disease Control and of Medicine [email protected] Prevention Cincinnati, OH om [email protected] [email protected] David Welch, Ph.D. -
Plague (Yersinia Pestis)
Division of Disease Control What Do I Need To Know? Plague (Yersinia pestis) What is plague? Plague is an infectious disease of animals and humans caused by the bacterium Yersinia pestis. Y. pestis is found in rodents and their fleas in many areas around the world. There are three types of plague: bubonic plague, septicemic plague and pneumonic plague. Who is at risk for plague? All ages may be at risk for plague. People usually get plague from being bitten by infected rodent fleas or by handling the tissue of infected animals. What are the symptoms of plague? Bubonic plague: Sudden onset of fever, headache, chills, and weakness and one or more swollen and painful lymph nodes (called buboes) typically at the site where the bacteria entered the body. This form usually results from the bite of an infected flea. Septicemic plague: Fever, chills, extreme weakness, abdominal pain, shock, and possibly bleeding into the skin and other organs. Skin and other tissues, especially on fingers, toes, and the nose, may turn black and die. This form usually results from the bites of infected fleas or from handling an infected animal. Pneumonic plague: Fever, headache, weakness, and a rapidly developing pneumonia with shortness of breath, chest pain, cough, and sometimes bloody or watery mucous. Pneumonic plague may develop from inhaling infectious droplets or may develop from untreated bubonic or septicemic plague after the bacteria spread to the lungs. How soon do symptoms appear? Symptoms of bubonic plague usually occur two to eight days after exposure, while symptoms for pneumonic plague can occur one to six days following exposure. -
Early History of Infectious Disease
© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time. -
Plague Fact Sheet Toledo-Lucas County Health Department | Emergency Preparedness
Plague Fact Sheet Toledo-Lucas County Health Department | Emergency Preparedness What is plague? or body fluids of a plague-infected animal. For Plague is a disease that affects humans and other example, a hunter skinning a rabbit without using mammals. It is caused by the bacterium, Yersinia proper precautions could become infected. This pestis. Humans usually get plague after being form of exposure may result in bubonic plague or bitten by a rodent flea that is carrying the plague septicemic plague. bacterium or by handling an animal infected with plague. Plague is infamous for killing millions of Infectious droplets. When a person had plague people in Europe during the Middle Ages. Today, pneumonia, they may cough droplets containing modern antibiotics are effective in treating plague. the plague bacteria into the air. F these bacteria- Without prompt treatment, the disease can cause containing droplets are breathed in by another serious illness or death. Presently, human plague person the can cause pneumonic plague. This infections continue to occur in the western United typically requires direct and close contact with the States, but significantly more cases occur in parts person with pneumonic plague. Transmission of of Africa and Asia. these droplets is the only way that plague can spread between people. How is plague transmitted? The plague bacteria can be transmitted to humans What are the symptoms of plague? in the following ways: Bubonic plague: Patients develop sudden onset fever, headache, chills, and weakness and one or Flea bites. Plague bacteria are most often more swollen, tender and painful lymph nodes. transmitted by the bite of an infected flea. -
CASE REPORT the PATIENT 33-Year-Old Woman
CASE REPORT THE PATIENT 33-year-old woman SIGNS & SYMPTOMS – 6-day history of fever Katherine Lazet, DO; – Groin pain and swelling Stephanie Rutterbush, MD – Recent hiking trip in St. Vincent Ascension Colorado Health, Evansville, Ind (Dr. Lazet); Munson Healthcare Ostego Memorial Hospital, Lewiston, Mich (Dr. Rutterbush) [email protected] The authors reported no potential conflict of interest THE CASE relevant to this article. A 33-year-old Caucasian woman presented to the emergency department with a 6-day his- tory of fever (103°-104°F) and right groin pain and swelling. Associated symptoms included headache, diarrhea, malaise, weakness, nausea, cough, and anorexia. Upon presentation, she admitted to a recent hike on a bubonic plague–endemic trail in Colorado. Her vital signs were unremarkable, and the physical examination demonstrated normal findings except for tender, erythematous, nonfluctuant right inguinal lymphadenopathy. The patient was admitted for intractable pain and fever and started on intravenous cefoxitin 2 g IV every 8 hours and oral doxycycline 100 mg every 12 hours for pelvic inflammatory disease vs tick- or flea-borne illness. Due to the patient’s recent trip to a plague-infested area, our suspicion for Yersinia pestis infection was high. The patient’s work-up included a nega- tive pregnancy test and urinalysis. A com- FIGURE 1 plete blood count demonstrated a white CT scan from admission blood cell count of 8.6 (4.3-10.5) × 103/UL was revealing with a 3+ left shift and a platelet count of 112 (180-500) × 103/UL. A complete metabolic panel showed hypokalemia and hyponatremia (potassium 2.8 [3.5-5.1] mmol/L and sodium 134 [137-145] mmol/L). -
Veterinary Services Newsletter August 2017
August 2017 Veterinary Services Newsletter August 2017 Wildlife Health Laboratory Veterinary Services Staff NALHN Certification: The Wildlife Health Laboratory has been working towards joining the National Animal Health Laboratory Network (NALHN) in order to have ac- cess to all CWD testing kits. The commercial test kits for CWD are now restricted, and Branch Supervisor/Wildlife only NALHN approved laboratories have access to all the kits that are currently availa- Veterinarian: Dr. Mary ble. To be considered for the program, our laboratory must meet the ISO 17025 stand- Wood ards of quality control that assure our laboratory is consistently and reliably producing Laboratory Supervisor: accurate results. In addition, our laboratory will be regularly inspected by APHIS Veter- Hank Edwards inary Services, and we will be required to complete annual competency tests. Although we have been meeting most of the ISO standards for several years, applying to the Senior Lab Scientist: NAHLN has encouraged us to tighten many of our procedures and quality control moni- Hally Killion toring. We hope to have the application submitted by the middle of August and we have our first APHIS inspection in September. Senior Lab Scientist: Jessica Jennings-Gaines Brucellosis Lab Assistant: New CWD area for elk: The Wildlife Health Laboratory confirmed the first case of Kylie Sinclair CWD in an elk from hunt area 48. This animal was captured in elk hunt area 33 as part of the elk movement study in the Bighorns to study Brucellosis. She was found dead in Wildlife Disease Specialist: hunt area 48, near the very southeastern corner of Washakie County. -
The Plague of Thebes, a Historical Epidemic in Sophocles' Oedipus
Oedipus Rex) is placed in the fi rst half of the decade 430– The Plague 420 BC. The play has been labeled an analytical tragedy, meaning that the crucial events which dominate the play of Thebes, a have happened in the past (2,3). Oedipus Rex, apart from the undeniable literary and Historical Epidemic historic value, also presents signifi cant medical interest because the play mentions a plague, an epidemic, which in Sophocles’ was devastating Thebes, the town of Oedipus’ hegemony. Oedipus Rex Several sections, primarily in the fi rst third of the play, refer to the aforementioned plague; the epidemic, however, Antonis A. Kousoulis, is not the primary topic of the tragedy. The epidemic, in Konstantinos P. Economopoulos, fact, is mostly a matter that serves the theatrical economy Effi e Poulakou-Rebelakou, George Androutsos, by forming a background for the evolution of the plot. and Sotirios Tsiodras Given the potential medical interest of Oedipus Rex, we decided to adopt a critical perspective by analyzing the Sophocles, one of the most noted playwrights of the literary descriptions of the plague, unraveling its clinical ancient world, wrote the tragedy Oedipus Rex in the fi rst features, defi ning the underlying cause, and discussing half of the decade 430–420 BC. A lethal plague is described in this drama. We adopted a critical approach to Oedipus possible therapeutic options. The ultimate goals of our Rex in analyzing the literary description of the disease, study were to clarify whether the plague described in unraveling its clinical features, and defi ning a possible Oedipus Rex could refl ect an actual historical event, underlying cause. -
Tick-Borne Disease Working Group 2020 Report to Congress
2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R. -
Plague (Yersinia Pestis)
Plague (Yersinia pestis) Septicemic plague: septicemia with or without an 1. Case Definition evident bubo 1.1 Confirmed Case: Primary pneumonic plague: resulting from Clinical evidence of illness* with laboratory inhalation of infectious droplets confirmation of infection: Secondary pneumonic plague: pneumonia Isolation of Yersinia pestis from body resulting from hematogenous spread in bubonic or fluids (e.g., fluid from buboes, throat septicemic cases swab, sputum, blood) OR Pharyngeal plague: pharyngitis and cervical A significant (i.e., fourfold or greater) rise lymphadenitis resulting from exposure to larger in serum antibody titre to Y. pestis fraction infectious droplets or ingestion of infected tissues 1 (F1) antigen by enzyme immunoassay (1). (EIA) or passive hemagglutination/inhibition titre (1). 2. Reporting and Other Requirements 1.2 Probable Case: Laboratory: Clinical evidence of illness* with one or more of All positive laboratory results for Yersinia the following: pestis are reportable to the Public Health Demonstration of elevated serum antibody Surveillance Unit by secure fax (204-948- titre(s) to Y. pestis F1 antigen (without 3044). A phone report must be made to a documented significant [i.e., fourfold or Medical Officer of Health at 204-788- greater] change) in a patient with no 8666 on the same day the result is history of plague immunization obtained, in addition to the standard OR surveillance reporting by fax. Demonstration of Y. pestis F1 antigen by immunofluorescence Manitoba clinical laboratories are required OR to submit residual specimens or isolate Detection of Y. pestis nucleic acid sub-cultures from individuals who tested OR positive for Yersinia pestis to Cadham > 1:10 passive hemagglutination/inhibition Provincial Laboratory (CPL) (204-945- titre in a single serum sample in a patient 6123) within 48 hours of report. -
Development of Diagnostic Assays for Melioidosis, Tularemia, Plague And
University of Nevada, Reno Development of Diagnostic Assays for Melioidosis, Tularemia, Plague and COVID19 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Biology By Derrick Hau Dr. David P. AuCoin / Dissertation Advisor December 2020 THE GRADUATE• SCHOOL We recommend that the dissertation prepared under our supervision by entitled be accepted in partial fulfillment of the requirements for the degree of Advisor Committee Member Committee Member Committee Member Graduate School Representative David W. Zeh, Ph.D., Dean Graduate School December 2020 i Abstract Infectious diseases are caused by pathogenic organisms which can be spread throughout communities by direct and indirect contact. Burkholderia pseudomallei, Francisella tularenisis, and Yersinia pestis are the causative agents of melioidosis, tularemia and plague, respectively. These bacteria pertain to the United States of America Federal Select Agent Program as they are associated with high mortality rates, lack of medical interventions and are potential agents of bioterrorism. The novel coronavirus disease (COVID-19) has resulted in a global pandemic due to the highly infectious nature and elevated virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Proper diagnosis of these infections is warranted to administer appropriate medical care and minimize further spreading. Current practices of diagnosing melioidosis, tularemia, plague and COVID-19 are inadequate due to limited resources and the untimely nature of the techniques. Commonly, diagnosing an infectious disease is by the direct detection of the causative agent. Isolation by bacterial culture is the gold standard for melioidosis, tularemia and plague infections; detection of SAR-CoV-2 nucleic acid by real-time polymerase chain reaction (RT-PCR) is the gold standard for diagnosing COVID-19. -
2010-2014 Wildlife Plague Surveillance (PDF)
Washington State Department of Health Zoonotic Disease Program Plague Wildife Plague Surveillance in Washington State Summary Report, 2010-2014 July 2016 Wildlife Plague Surveillance Partners We wish to acknowledge and thank our surveillance partners for their contributions: Partners Shannon Murphie, Makah Tribe Forestry, Wildlife Division Sandra Celestine, Yakama Nation, Wildife Resource Sean Carrell, Washington State Department of Fish and Wildlife Colin Leingang, JBLM Yakima Training Center, Wildlife Program John Young, U.S. Centers for Disease Control and Prevention, Vector-Borne Infectious Diseases Sarah Bevins, U.S. Department of Agriculture, APHIS WS, National Wildlife Disease Program Wildlife Plague Surveillance in Washington Summary Report, July 2010‐June 2014 Plague surveillance using serological testing of wild carnivores helps to identify areas of plague activity in Washington. This report summarizes wildlife plague surveillance activities and findings from July 2010 through June 2014. July 2016 To obtain copies or for additional information, please contact: Zoonotic Disease Program PO Box 47825 Olympia, Washington 98504‐7825 Phone: 1‐800‐485‐7316 Webpage: www.doh.gov/zoonosescontact For persons with disabilities, the document is also available upon request in other formats. To submit a request, please call 1‐800‐525‐0127 (voice) or 1‐800‐833‐6388 (TTY/TDD). Publication #333‐401 July 2016 John Wiesman Secretary of Health Division of Environmental Public Health Wildlife Plague Surveillance in Washington, 2010-2014 Plague is essentially a disease of rodents caused by the bacterium Yersinia pestis. It can be transmitted to people through bites of infected fleas or from handling an infected animal. The disease can cause serious illness and death when not promptly treated.