Alosa Sapidissima (Wilson 1811): American Shad

Total Page:16

File Type:pdf, Size:1020Kb

Alosa Sapidissima (Wilson 1811): American Shad Alosa Sapidissima (Wilson 1811): American Shad (Also: common shad, Atlantic shad, white shad) KC Dill FISH 423 – Fall 2011 http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=49 numbering more than 60 on the first arch, before Diagnostic Information the bend (Moyle 1976). The Pacific sardine Taxonomy: Order – Clupeiformes (Sardinops sagax) is the fish in this region that most closely resembles A. sapidissima (Figure Family – Clupeidae 2), but it is much smaller (up to 41 cm in length, but usually no more than 30 cm). S. sagax does Genus – Alosa have dark spots similar to those of the American Species – sapidissima shad, but they have more variation in number and placement. In addition, it has a shallower body and less pronounced scutes than the shad. Finally, the Pacific sardine is a pelagic fish and American shad is an anadromous would not be located in river systems as is the member of the herring family. It is the largest American shad (Peterson et al 1999). clupeid and the only anadromous herring on the West Coast. As a clupeid, A. sapidissima is thin- bodied and has a small dorsal fin approximately midway down the back, with pelvic fins positioned abdominally. Herring have no adipose fin or fin spines. Clupeids also possess a deeply forked caudal fin and cycloid scales, which grow by adding concentric layers (Figure 1). The head lacks scales (Peterson et al 1999). As the only member of the genus Alosa present on the West Coast, American shad is relatively easy to identify. It is large, up to 76 cm, and has a deep belly with bony scutes, giving it a saw Figure 1. Diagram of cycloid-type scales tooth appearance. The coloring of live fish tends (reproduced from earthlife.net to be a steel blue on the back with silver sides http://nathistoc.bio.uci.edu/Fish/Sardinops%20sa and belly. A row of dark spots starting just h) behind the operculum is a useful identifying feature for this fish. The gill rakers tend to be long and numerous, typically al 2003). This usually results in spawning in the main stems of rivers, rather than the more distant and colder tributaries preferred by salmon. Males are generally the first to arrive and are three years old on average, while the females follow after and are typically around four years of age. Historically, American shad begin to run in small numbers in March or April, with a peak around June. Shad spawn soon after entering freshwater, with the females releasing between 30,000 and 300,000 eggs, depending on her age Figure 2. Pacific sardine pictured on top, American shad is on bottom. Note differences and size (Moyle 1976). Based on their location in body shape and depth. and the ambient temperature, American shad may be either semelparous or iteroparous. This occurs along a latitudinal cline, with semelparity Life History and Basic Ecology dominant in the more southern, warmer waters Life Cycle and Reproductive Strategies and iteroparity more typical of the northern, colder areas (Leggett and Carscadden 1978). The life history of the American shad is The timing of spawning also varies spatially, complex and spatially variable. Like our native apparently in response to temperature. As shown salmon, A. sapidissima is anadromous, with the in Figure 3, spawning time moves earlier in the exception of one isolated population in Millerton year with decreasing latitude and increasing Lake in California, which has been landlocked temperature (Limburg et al 2003). since 1955 (DJ Hasselman University of Once the eggs have been released, they tend to Washington personal communication). Most of remain suspended in the water column and are the research in this area has been focused on the gradually carried downstream by the currents. American shad’s native range, along the eastern The eggs hatch quickly, on the order of three to coast of North America. In its native area, the six days (Moyle 1976). Larvae then recruit to the shad exhibits a high rate of philopatry, with 97% shorelines to rear before transforming to young- of spawners returning to their natal stream of-the-year juveniles. In the Columbia River (Melvin et al 1986). Adults swim upriver and basin, this process appears to take approximately can spawn in a wide range of habitats, although two months, with larvae emerging in June and they appear to prefer areas with temperatures July (for 1995 and 1996), recruiting to the between 14°C and 24.5°C and a low water shoreline in July and August, and finally velocity, typically less than 0.7 m/s (Petersen et River systems. Adults spend three to six years in the marine environment before returning to their natal streams to spawn (Petersen et al 2003; Moyle 1976; DJ Hasselman personal communication). Feeding Habits American shad primarily feed on zooplankton, although the adults will consume crustaceans and small fish in some areas. Adults typically do not feed at all during spawning or Figure 3. Periods of spawning runs for the American when in freshwater (Facey and Van Den Avyle shad within its native range (Source: Limburg et al. 1986). Juveniles feed on smaller zooplankton 2003) and their diet in the Pacific Northwest consists mainly of Cyclopoid and Calanoid copepods and appearing as young juveniles in late July and various cladocerans, but they will feed September (Petersen et al 2003). Juveniles opportunistically on insect larvae and other exhibit diel migration, tending to stay at the small planktonic organisms (Petersen et al bottom of the river channel or near shore during 2003). Again, the Millerton Lake population the day and move through the water column at presents an exception, as there is anecdotal night (Gadomski and Barfoot 1998). Little is evidence they have become piscivorous, known about the migration patterns of American predating on the threadfin shad. The gill rakers shad once they leave the rivers. Juveniles will have become reduced in both length and number often overwinter in nearshore estuaries, but accordingly (DJ Hasselman personal others leave immediately for the open ocean. communication). Mature adults in the Atlantic may migrate to the Bay of Fundy to feed between spawning Environmental Optima and Tolerances seasons, although this pattern does not hold true American shad have the ability to adapt for the first year of life (Walther and Thorrold to a fairly wide range of environments, as 2010). Even less is known about migration evidenced by their anadromous lifestyle and patterns in the Pacific, but it appears the shad variable life histories and feeding strategies migrate north from spawning sites, as indicated based on temperature and location. However, by higher than usual by-catch of American shad temperature is a very important factor for shad on trawls north of the Columbia and Sacramento as it determines when and where they will migrate (Leggett and Whitney 1972). When only five hours (Facey and Van Den Avyle spawning, A. sapidissima prefers a water 1986). temperature between 14°C and 21°C and their An adequate supply of dissolved oxygen is also outer limits for temperature have been recorded important for American shad. A dissolved as low as 8°C and as high as 26°C (Facey and oxygen content greater than 5.0 mg/l is ideal for Van Den Avyle 1986). However, the highest spawning, with 4.0 mg/l being the minimum survival rates for eggs and larvae are achieved amount necessary for success (Chittenden 1973). between 15.5°C and 26.6°C (Leggett and Larvae exposed to concentrations lower than 2.9 Whitney 1972). Temperatures below 9°C tend to mg/l experience high mortality rates, with 100% be lethal to both eggs and larvae. Juvenile shad mortality below 1.0 mg/l (Facey and Van Den can tolerate colder waters and have been Avyle 1986). A minimum oxygen content of 2.5 recorded in waters as cold as 2°C, but they stop to 3.0 mg/l is necessary during juvenile feeding and begin experiencing negative effects migration, but they may be able to survive at around 6°C (Facey and Van Den Avyle 1986). lower levels for short periods of time When in the Atlantic Ocean, shad have been (Chittenden 1973). noted in temperatures ranging from 3°C to 15°C, The velocity of water movement is also very although most were found between 7°C and important during spawning and early life stages. 13°C (Neves and Depres 1979). No data has High velocities can affect mature adults been collected on American shad’s tolerances or swimming upstream by increasing the amount of preferences in the Pacific Ocean. energy expended to reach their spawning American shad must be able to acclimatize to a grounds. After spawning, the flow must be wide range of salinities over their lifetime. Eggs strong enough to keep the eggs suspended, but are laid in freshwater systems, but studies have not so strong that they are washed out into the determined some eggs can successfully hatch in sea or into other inhospitable environments mild salinities of 7.5 ppt to 15 ppt. None of the (Facey and Van Den Avyle 1986). The optimal eggs in the study were viable at salinities of 22.5 water velocity for American shad is around 0.7 ppt and above. Juvenile fish are capable of m/s (Petersen et al 2003). Turbidity level, depth tolerating both fresh and brackish waters, and of water, and type of substrate do not appear to frequently travel between estuaries and rivers affect shad much, and they are able to (Chittenden 1972). Adult shad must spend two successfully spawn in a wide range of conditions or three days in brackish water before venturing (Facey and Van Den Avyle 1986).
Recommended publications
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • Winter Populations, Behavior, and Seasonal Dispersal of Bald Eagles in Northwestern Illinois
    WINTER POPULATIONS, BEHAVIOR, AND SEASONAL DISPERSAL OF BALD EAGLES IN NORTHWESTERN ILLINOIS WILLIAM E. SOUTHERN s a result of efforts by Bent (1937)) Broley (1952)) Herrick (1924, A 1932, and 1933), Imler (1955)) and others, numerous data on the Bald Eagle (Haliaeetus Zeucocephalus) are available. Little of the published information, however, pertains to the winter habits of the species or to winter population dynamics and seasonal movements. Between 27 November 1961 and 1 April 1962, at the Savanna Army Depot, Carroll and Jo Daviess counties, Illinois, my assistants and I spent 232 hours observing and attempting to trap eagles. Additional time was devoted to other aspects of the project (making and setting traps, securing bait, etc.). On several occasions we spent the entire daylight period in the area. The study area extended for 14 miles along the Mississippi River and its backwaters and sloughs, which were proliferated with islands (Fig. 1). Most of the slightly rolling terrain bordering the river was covered by deciduous forest. The trees along a portion of the main channel had been thinned to the point that the area (between points 1 and 2, Fig. 1) resembled a park. The study area represented only a small part of the habitat suitable for eagles near Savanna; however, it probably had the greatest abundance of food and, there- fore, eagles (we observed only four outside the Depot; three of these during spring dispersal). The concentrations reported during our study were larger than those reported elsewhere in the state. My objectives were to record behavior, live-trap, color-mark, and determine the movements of Bald Eagles during the winter and early spring.
    [Show full text]
  • IMR/PINRO Nr. 2
    IMR/PINRO J O 2 S I E N I T 2013 R E R E S P O R T $WODVRIWKH%DUHQWV6HDÀVKHV based on the winter survey Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO This report should be cited as: Wienerroither R., Johannesen E., Dolgov A., Byrkjedal I., Aglen A., Bjelland O., Drevetnyak K., Eriksen KB., Høines Å., Langhelle G., Langøy H., Murashko P., Prokhorova T., Prozorkevich D., Smirnov O., Wenneck T. 2013. 2013. Atlas of the Barents Sea Fishes based on the winter survey. IMR-PINRO Joint Report Series 2-2013. ISSN 1502-8828. 220 pp. Atlas of the Barents Sea Fishes based on the winter survey Authors: Rupert Wienerroither, Edda Johannesen, Herdis Langøy, Kirsti Børve Eriksen, Thomas de Lange Wenneck, Åge Høines, Otte Bjelland and Asgeir Aglen IMR Andrey Dolgov, Tatiana Prokhorova, Pavel Murashko, Dmitry Prozorkevich, Konstantin Drevetnyak and Oleg Smirnov PINRO Ingvar Byrkjedal and Gunnar Langhelle University Museum of Bergen Foreword This report is intended as a supplement to the “Atlas of the Barents Sea Fishes” (Wienerroither et al. 2011). The data used in the “Atlas of the Barents Sea Fishes” were gathered on the IMR-PINRO ecosystem survey (2004-2009). The maps presented in this supplement are based on data from February-March 2007-2012 that are gathered on the joint IMR PINRO winter survey. Differences between the two surveys and seasons and how these influence the spatial distributions presented in the maps are described in the introduction. The species descriptions are the same as in and the structure of this report is similar to the “Atlas of the Barents Sea Fishes”.
    [Show full text]
  • Shad in the Schools, NC
    Attachment 1 Food Web Activity Student Sheet Background Information: Shad in the Schools, N.C. The coastal rivers and shallow marine environments along the coast of North Carolina are home to complex ecosystems. Within these freshwater and saltwater ecosystems there is an intimate relationship between many different producers and consumers. These produces and consumers create an interconnected food web. Each organism is dependent on clean water, oxygen, and healthy riparian corridors on the lands adjacent to these waters. The disruption of just one component of any food web can disturb all living things, including humans. American shad, a member of the herring family, is one species of fish that plays a critical role in the river and near shore shallow marine ecosystems of North Carolina. Shad are an anadromous species, meaning they live in the ocean but return to the rivers of North Carolina in the spring to spawn, or reproduce, each spring. This means that shad serve as a food source for many animals living in both inland freshwater and marine environments. Predators of shad include other fishes such as striped bass and king mackerel, bald eagles, bottlenose dolphin, and humans. Bald eagles have evolved to raise their young at the same time that anadromous fishes, such as shad, return to the rivers to spawn so that the young eaglets will have a plentiful food source. This evolutionary trait highlights the connectivity that can be found within food webs. Bald Eagles can be viewed now through a new technology, web cams. To see eagles that feed on herring near North Carolina, view http://www.friendsofblackwater.org/camhtm2.html.
    [Show full text]
  • Arizona Fishing Regulations 3 Fishing License Fees Getting Started
    2019 & 2020 Fishing Regulations for your boat for your boat See how much you could savegeico.com on boat | 1-800-865-4846insurance. | Local Offi ce geico.com | 1-800-865-4846 | Local Offi ce See how much you could save on boat insurance. Some discounts, coverages, payment plans and features are not available in all states or all GEICO companies. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. GEICO is a registered service mark of Government Employees Insurance Company, Washington, D.C. 20076; a Berkshire Hathaway Inc. subsidiary. TowBoatU.S. is the preferred towing service provider for GEICO Marine Insurance. The GEICO Gecko Image © 1999-2017. © 2017 GEICO AdPages2019.indd 2 12/4/2018 1:14:48 PM AdPages2019.indd 3 12/4/2018 1:17:19 PM Table of Contents Getting Started License Information and Fees ..........................................3 Douglas A. Ducey Governor Regulation Changes ...........................................................4 ARIZONA GAME AND FISH COMMISSION How to Use This Booklet ...................................................5 JAMES S. ZIELER, CHAIR — St. Johns ERIC S. SPARKS — Tucson General Statewide Fishing Regulations KURT R. DAVIS — Phoenix LELAND S. “BILL” BRAKE — Elgin Bag and Possession Limits ................................................6 JAMES R. AMMONS — Yuma Statewide Fishing Regulations ..........................................7 ARIZONA GAME AND FISH DEPARTMENT Common Violations ...........................................................8 5000 W. Carefree Highway Live Baitfish
    [Show full text]
  • Atlantic Herring
    Species Profile: Atlantic Herring New Stock Assessment Could Lead to Species Snapshot Management Changes Introduction Atlantic Herring Until recently, the Atlantic herring stock had been considered healthy and fully rebuilt from a Clupea harengus collapsed stock in the 1980s. However, the results of the 2018 benchmark stock assessment have raised new concerns about the Atlantic herring resource. While the stock remains not Management Unit: Maine through New Jersey overfished and was not experiencing overfishing in the terminal year (2017) of the assess- ment, the assessment did show very low levels of recruitment over the past five years. These Common Names: Sea herring, sardine, sild, results will likely have management implications for the species as regulators work to prevent common herring, Labrador herring, sperling overfishing from occurring in the coming years. Diminished stock size and, in turn, lowered catch limits will also impact fisheries that rely on Atlantic herring as an important source of Interesting Facts: bait, such as American lobster, blue crab, tuna, and striped bass fisheries. • Atlantic herring and other clupeid fish have exceptional hearing. They can detect sound Life History frequencies up to 40 kilohertz, beyond the Atlantic sea herring is one of 200 species in the clupeid family, which includes menhaden, range of most fish. This allows schooling fish shad, and river herring. It inhabits coastal waters of the U.S. from Cape Hatteras, North Caro- to communicate while avoiding detection by lina through Labrador, Canada, and off the coast of Europe. Herring form the base of the food predatory fish. web as a forage species for many animals, from starfish and whelk to economically import- • While most members of the clupeid family are ant fish such as haddock, cod, and flounder.
    [Show full text]
  • Studies on Blood Proteins in Herring
    FiskDir. Skr. SET.HavUi~ders., 15: 356-367. COMPARISON OF PACIFIC SARDINE AND ATLANTIC MENHADEN FISHERIES BY JOHN L. MCHUGH Office of Marine Resources U.S. Department of the Interior, Washington, D.C. INTRODUCTION The rise and fall of the North American Pacific coast sardine fishery is well known. Oilce the most important fishery in the western hemisphere in weight of fish landed, it now produces virtually nothing. The meal and oil industry based on the Pacific sardine (Sardinoljs caerulea) resource no longer exists. The sardine fishery (Fig. 1A) began in 1915, rose fairly steadily to its peak in 1936 (wit11 a dip during the depression), maintained an average annual catch of more than 500 000 tons until 1944, then fell off sharply. Annual production has not exceeded 100 000 tons since 1951, and commercial sardine fishing now is prohibited in California waters. A much smaller fishery for the southern sub-population developed off Baja California in 195 1. The decline of the west coast sardine fishery gave impetus to the much older menhaden (Breuoortia tyranlzus) fishery (Fig. 1B) along the Atlantic coast of the United States. Fishing for Atlantic menhaden began early in the nineteenth century. From the 1880's until the middle 1930's the annual catch varied around about 200 000 tons. In the late 1930's annual landings began to increase and from 1953 to 1962 inclusive re- mained above 500 000 tons. The peak year was 1956, with a catch of nearly 800 000 tons. After 1962 the catch began to fall off sharply, reach- ing a low of less than 250 000 tons in 1967.
    [Show full text]
  • Essential and Toxic Elements in Sardines and Tuna on the Colombian Market
    Food Additives & Contaminants: Part B Surveillance ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tfab20 Essential and toxic elements in sardines and tuna on the Colombian market Maria Alcala-Orozco, Prentiss H. Balcom, Elsie M. Sunderland, Jesus Olivero- Verbel & Karina Caballero-Gallardo To cite this article: Maria Alcala-Orozco, Prentiss H. Balcom, Elsie M. Sunderland, Jesus Olivero-Verbel & Karina Caballero-Gallardo (2021): Essential and toxic elements in sardines and tuna on the Colombian market, Food Additives & Contaminants: Part B, DOI: 10.1080/19393210.2021.1926547 To link to this article: https://doi.org/10.1080/19393210.2021.1926547 Published online: 08 Jun 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tfab20 FOOD ADDITIVES & CONTAMINANTS: PART B https://doi.org/10.1080/19393210.2021.1926547 Essential and toxic elements in sardines and tuna on the Colombian market Maria Alcala-Orozco a,b, Prentiss H. Balcomc, Elsie M. Sunderland c, Jesus Olivero-Verbel a, and Karina Caballero-Gallardo a,b aEnvironmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia; bFunctional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia; cJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA ABSTRACT ARTICLE HISTORY The presence of metals in canned fish has been associated with adverse effects on human health. Received 15 January 2021 The aim of this study was to evaluate risk-based fish consumption limits based on the concentra­ Accepted 2 May 2021 tions of eight essential elements and four elements of toxicological concern in sardines and tuna KEYWORDS brands commercially available in the Latin American canned goods market.
    [Show full text]
  • The Decline of Atlantic Cod – a Case Study
    The Decline of Atlantic Cod – A Case Study Author contact information Wynn W. Cudmore, Ph.D., Principal Investigator Northwest Center for Sustainable Resources Chemeketa Community College P.O. Box 14007 Salem, OR 97309 E-mail: [email protected] Phone: 503-399-6514 Published 2009 DUE # 0757239 1 NCSR curriculum modules are designed as comprehensive instructions for students and supporting materials for faculty. The student instructions are designed to facilitate adaptation in a variety of settings. In addition to the instructional materials for students, the modules contain separate supporting information in the "Notes to Instructors" section, and when appropriate, PowerPoint slides. The modules also contain other sections which contain additional supporting information such as assessment strategies and suggested resources. The PowerPoint slides associated with this module are the property of the Northwest Center for Sustainable Resources (NCSR). Those containing text may be reproduced and used for any educational purpose. Slides with images may be reproduced and used without prior approval of NCSR only for educational purposes associated with this module. Prior approval must be obtained from NCSR for any other use of these images. Permission requests should be made to [email protected]. Acknowledgements We thank Bill Hastie of Northwest Aquatic and Marine Educators (NAME), and Richard O’Hara of Chemeketa Community College for their thoughtful reviews. Their comments and suggestions greatly improved the quality of this module. We thank NCSR administrative assistant, Liz Traver, for the review, graphic design and layout of this module. 2 Table of Contents NCSR Marine Fisheries Series ....................................................................................................... 4 The Decline of Atlantic Cod – A Case Study ................................................................................
    [Show full text]
  • Atlantic Cod (Gadus Morhua) Off Newfoundland and Labrador Determined from Genetic Variation
    COSEWIC Assessment and Update Status Report on the Atlantic Cod Gadus morhua Newfoundland and Labrador population Laurentian North population Maritimes population Arctic population in Canada Newfoundland and Labrador population - Endangered Laurentian North population - Threatened Maritimes population - Special Concern Arctic population - Special Concern 2003 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2003. COSEWIC assessment and update status report on the Atlantic cod Gadus morhua in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 76 pp. Production note: COSEWIC would like to acknowledge Jeffrey A. Hutchings for writing the update status report on the Atlantic cod Gadus morhua, prepared under contract with Environment Canada. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation de la morue franche (Gadus morhua) au Canada Cover illustration: Atlantic Cod — Line drawing of Atlantic cod Gadus morhua by H.L. Todd. Image reproduced with permission from the Smithsonian Institution, NMNH, Division of Fishes. Her Majesty the Queen in Right of Canada, 2003 Catalogue No.CW69-14/311-2003-IN ISBN 0-662-34309-3 Recycled paper COSEWIC Assessment Summary Assessment summary — May 2003 Common name Atlantic cod (Newfoundland and Labrador population) Scientific name Gadus morhua Status Endangered Reason for designation Cod in the inshore and offshore waters of Labrador and northeastern Newfoundland, including Grand Bank, having declined 97% since the early 1970s and more than 99% since the early 1960s, are now at historically low levels.
    [Show full text]
  • Some Factors Affecting Fish Forage Production in Four Arizona Lakes
    Some factors affecting fish forage production in four Arizona lakes Item Type text; Thesis-Reproduction (electronic) Authors Bergersen, Eric P. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 20:32:03 Link to Item http://hdl.handle.net/10150/552039 SOME FACTORS AFFECTING FISH FORAGE PRODUCTION IN FOUR ARIZONA LAKES by Eric P. Bergersen A Thesis Submitted to the Faculty of the DEPARTMENT OF BIOLOGICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN FISHERY BIOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 6 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Atlantic Herring Atlantic
    Atlantic herring Clupea harengus Image ©Scandinavian Fishing Yearbook / www.scandfish.com Atlantic Midwater trawl, Purse Seine November 17, 2014 Lindsey Feldman, Consulting researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. 2 About Seafood Watch® Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible.
    [Show full text]