The Status and Future of Ground-Based Tev Gamma-Ray

Total Page:16

File Type:pdf, Size:1020Kb

The Status and Future of Ground-Based Tev Gamma-Ray The Status and future of ground-based TeV gamma-ray astronomy A White Paper prepared for the Division of Astrophysics of the American Physical Society Organizers and working-group chairs: J. Buckley, Washington University, St. Louis, K. Byrum, Argonne National Laboratory, B. Dingus, Los Alamos National Laboratory, A. Falcone, Pennsylvania State University, P. Kaaret, University of Iowa, H. Krawzcynski, Washington University, St. Louis, M. Pohl, Iowa State University, V. Vassiliev, University of California, Los Angeles, D.A. Williams, University of California, Santa Cruz Contents 1 Summary and Overview 1 1.1 ExecutiveSummary ................................ .... 1 1.1.1 Summaryoffindings.............................. 1 1.1.2 Recommendations ............................... 3 1.2 Ground based γ-ray astronomy - historical milestones . 4 1.3 Scientificoverview ............................... ...... 6 1.3.1 Unveiling an important component of our Universe: high-energy particles . 6 1.3.2 Radiation processes and the sky in high-energy γ-rays ............. 7 arXiv:0810.0444v1 [astro-ph] 2 Oct 2008 1.3.3 Diffuse emission and the nature and distribution of dark matter . 9 1.3.4 Powerful particle accelerators in our Milky Way Galaxy: supernova remnants, pulsars,andstellarmassblackholes . .... 9 1.3.5 Extragalactic sources of TeV γ-rays ....................... 10 1.4 Technology and the path toward a future observatory . ............. 11 1.5 Synergies with other wavebands and particle astronomy missions ........... 13 2 Galactic diffuse emission, supernova remnants, and the origin of cosmic rays 15 2.1 Whyaretheyimportant? ............................ ..... 15 2.2 Whatdoweknowalready? ............................ 16 2.2.1 Supernovaremnants .. .. .. .. .. .. .. .. .. 16 2.2.2 Diffuse galactic emission . ..... 21 2.3 Whatmeasurementsareneeded? . ....... 23 2.3.1 Supernovaremnants .. .. .. .. .. .. .. .. .. 23 2.3.2 Diffuse galactic emission . ..... 25 2.4 What is the required instrument performance? . ............ 26 1 3 Galactic compact objects 28 3.1 Introduction.................................... ..... 28 3.2 Pulsarwindnebulae ............................... ..... 28 3.2.1 Measurementsneeded . 29 3.3 Pulsedemissionfromneutronstars . .......... 31 3.3.1 Measurementsneeded . 32 3.4 Relativistic jets from binaries . ........... 32 3.4.1 Currentstatus ................................. 33 3.4.2 Measurementsneeded . 34 3.5 Requiredinstrumentperformance. .......... 36 4 Dark matter searches with a future VHE gamma-ray observatory 37 4.1 Introduction.................................... ..... 37 4.2 Dark Matter Annihilation into γ-rays, and the uncertainties in the predicted flux . 42 4.3 Targets for Gamma-Ray Detection . ........ 43 4.3.1 DwarfSpheroidals .............................. 46 4.3.2 Localgroupgalaxies .. .. .. .. .. .. .. .. 48 4.3.3 Detecting the Milky Way Substructure .................................... 49 4.3.4 Detecting Microhalos . ..... 49 4.3.5 Spikes around Supermassive and Intermediate-Mass Black Holes . 49 4.3.6 Globularclusters .............................. 51 4.4 Complementarity of γ-Ray Searches with Other Methods for Dark Matter Searches . 51 4.5 Conclusions ..................................... 53 5 Extragalactic VHE astrophysics 55 5.1 Introduction.................................... ..... 55 5.2 Gamma-ray observations of supermassive black holes . ............... 55 5.3 Cosmic rays from star-forming galaxies . ............ 58 5.4 The largest particle accelerators in the universe: radio galaxies, galaxy clusters, and largescalestructureformationshocks . ......... 60 5.5 Extragalactic radiation fields and extragalactic magneticfields ............ 62 6 Gamma-ray bursts 66 6.1 Introduction.................................... ..... 66 6.1.1 Status of theory on emission models........................................ 66 6.1.2 GRBProgenitors................................ 69 6.2 High-energy observations of gamma-ray bursts . ............. 70 6.3 High Energy Emission Predictions for Long Bursts . ............. 71 6.3.1 Promptemission ................................ 71 6.3.2 Decelerationphase . .. .. .. .. .. .. .. .. 72 6.3.3 Steepdecay.................................... 73 6.3.4 Shallowdecay.................................. 73 6.3.5 High-energy photons associated with X-ray flares . ............ 74 6.3.6 High-energy photons from externalreprocessing.. .. .. .. .. .. .. .. .. 75 6.4 High Energy Emission Predictions for Short Bursts . .............. 75 2 6.5 Supernova-associated gamma-ray bursts . ............ 76 6.6 UltraHighEnergyCosmicRaysandGRBs . ....... 76 6.7 Tests of Lorentz Invariance with Bursts . ........... 78 6.8 Detection Strategies for VHE Gamma-Ray Burst Emission . .............. 78 6.9 Synergywithotherinstruments . ......... 80 6.10Conclusions .................................... ..... 80 7 Technology working group 82 7.1 Introductionandoverview . ........ 82 7.2 Status of ground-based gamma-ray observatories . .............. 83 7.3 Design considerations for a next-generation gamma-ray detector . 85 7.4 FutureIACTarrays ................................ 85 7.5 FutureEASobservatory . ...... 90 7.6 Technologyroadmap ............................... ..... 93 References 96 Appendices 108 A Glossary 108 A.1 Astronomicalandphysicsterms. .........108 A.2 Abbreviationsandacronyms. ........111 B Charge from APS 113 C Letter to community (via e-mail) 115 D Agenda for Malibu meeting 117 E Agenda for Santa Fe meeting 121 F Agenda for Chicago meeting 122 G Agenda for SLAC meeting 124 H Agenda and record of white paper teleconference meetings 126 I Membership 128 3 1 Summary and Overview tronomy by Hinton1, and by Aharonian et al.2. Appendix A lists the authors of the White Pa- 1.1 Executive Summary per, the make-up of the working groups, and the meetings organized by the White Paper team. Appendix B reproduces the APS charge. High-energy γ-ray astrophysics studies the most energetic processes in the Universe. It explores cosmic objects such as supermassive black holes 1.1.1 Summary of Findings and exploding stars which produce extreme con- (F1) The current generation of instruments has ditions that cannot be created in experiments demonstrated that TeV γ-ray astronomy is a on Earth. The latest generation of γ-ray instru- rich field of research. TeV γ-ray astronomy saw ments has discovered objects that emit the bulk its first major success in the year 1989 with the of their power in the form of high-energy γ-rays. firm detection of a cosmic source of TeV γ-ray High-speed imaging technology, with gigahertz emission, the Crab Nebula, with the Whipple frame rates allow us to detect individual cosmic 10-m Cherenkov telescope. To date, advances γ-ray photons produced under the most violent in instrumentation and analysis techniques have and extreme conditions. Gamma-ray astronomy established TeV γ-ray astronomy as one of the has unique capabilities to reveal the nature of most exciting new windows into the Universe. the elusive dark matter that dominates the mat- The H.E.S.S., MAGIC, and VERITAS experi- ter contents of the Universe. ments have shown us a glimpse of the discovery Motivated by the recent advances of TeV γ- potential of this new type of astrophysics. The ray astronomy, the Division of Astrophysics of Milagro and Tibet experiments have explored an the American Physical Society (APS) charged alternative experimental technique that permits the editorial board of this White Paper to sum- a full survey of the sky. Due to the increased marize the status and future of ground-based sensitivity of these instruments, the number of γ-ray astronomy. The APS requested a review known TeV γ-ray sources has increased by an of the science accomplishments and potential of order of magnitude (from ∼10 to ∼100) in the the field. Furthermore, the charge called for a past 3 years. Known source classes include the description of a clear path beyond the immedi- remnants of supernova explosions, neutron stars, ate future to assure the continued success of this supermassive black holes, and possibly groups field. The editorial board solicited input from of massive stars. Many new TeV sources and all sectors of the astroparticle physics commu- source classes have been discovered. Several of nity through six open working groups, targeted them have heretofore unobserved substructures international meetings, and emails distributed resolved by TeV γ-ray telescopes, indicating through the APS and the High-Energy Astro- isolated regions in which energy is transferred physics Division of the American Astronomical to high-energy particles. Several sources show Society. The board also enlisted senior advisers brightness variations clearly resolved in the that represent ground-based and satellite-based TeV data; the previously known sources Mrk γ-ray astronomy, particle physics, and the inter- 421 and PKS 2155-304, both of which involve national community of astroparticle physicists. a supermassive black hole, have been observed This section summarizes the findings and rec- to vary on timescales as short as 2 minutes, ommendations of the White Paper team. It also indicating that the emission regions may be gives a brief introduction to the science topics comparable in size to the event horizon of that can be addressed with TeV γ-ray astron- the parent black hole, and revealing the inner omy. The interested reader is referred to the 1 detailed discussions in the reports of the work- Hinton, J., 2007, http://arxiv.org/abs/0712.3352 2Aharonian, F., Buckley,
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • How Is Video Game Development Different from Software Development in Open Source?
    Delft University of Technology How Is Video Game Development Different from Software Development in Open Source? Pascarella, Luca; Palomba, Fabio; Di Penta, Massimiliano; Bacchelli, Alberto DOI 10.1145/3196398.3196418 Publication date 2018 Document Version Accepted author manuscript Published in Proceedings of the 15th International Conference on Mining Software Repositories, MSR. ACM, New York, NY Citation (APA) Pascarella, L., Palomba, F., Di Penta, M., & Bacchelli, A. (2018). How Is Video Game Development Different from Software Development in Open Source? In Proceedings of the 15th International Conference on Mining Software Repositories, MSR. ACM, New York, NY (pp. 392-402) https://doi.org/10.1145/3196398.3196418 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. How Is Video Game Development Different from Software Development in Open Source? Luca Pascarella1,
    [Show full text]
  • An Updated Maximum Likelihood Approach to Open Cluster Distance Determination M
    Astronomy & Astrophysics manuscript no. OCdistanceDeterminationAstroPh c ESO 2018 October 25, 2018 An updated maximum likelihood approach to open cluster distance determination M. Palmer1, F. Arenou2, X. Luri1, and E. Masana1 1 Dept. d’Astronomia i Meteorologia, Institut de Ciencies` del Cosmos, Universitat de Barcelona (IEEC-UB), Mart´ı Franques` 1, E08028 Barcelona, Spain. 2 GEPI, Observatoire de Paris, CNRS, Universite´ Paris Diderot, 5 place Jules Janssen, 92190, Meudon, France Preprint online version: October 25, 2018 ABSTRACT Aims. An improved method for estimating distances to open clusters is presented and applied to Hipparcos data for the Pleiades and the Hyades. The method is applied in the context of the historic Pleiades distance problem, with a discussion of previous criticisms of Hipparcos parallaxes. This is followed by an outlook for Gaia, where the improved method could be especially useful. Methods. Based on maximum likelihood estimation, the method combines parallax, position, apparent magnitude, colour, proper motion, and radial velocity information to estimate the parameters describing an open cluster precisely and without bias. Results. We find the distance to the Pleiades to be 120:3±1:5 pc, in accordance with previously published work using the same dataset. We find that error correlations cannot be responsible for the still present discrepancy between Hipparcos and photometric methods. Additionally, the three-dimensional space velocity and physical structure of Pleiades is parametrised, where we find strong evidence of mass segregation. The distance to the Hyades is found to be 46:35 ± 0:35 pc, also in accordance with previous results. Through the use of simulations, we confirm that the method is unbiased, so will be useful for accurate open cluster parameter estimation with Gaia at distances up to several thousand parsec.
    [Show full text]
  • Etir Code Lists
    eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet.
    [Show full text]
  • Kosminio Žingsninio Strateginio Žaidimo Kūrimas. Duomenų Bazės Projektavimas Ir Realizavimas Šiaulių Universitetas 2010
    ŠIAULIŲ UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Remigijus Valčiukas Informatikos specialybės IV kurso dieninio skyriaus studentas Kosminio žingsninio strateginio žaidimo kūrimas. Duomenų bazės projektavimas ir realizavimas Development of Space Turn-Based Strategy Game: Database Design and Implementation BAKALAURO DARBAS Darbo vadovas: Lekt. G. Lūža Recenzentas: Lekt. V.Giedrimas Šiauliai, 2010 Turinys Įvadas ............................................................................................................................................................................. 3 1. Analitinė dalis ....................................................................................................................................................... 4 1.1 Programos be apribojimų .............................................................................................................. 4 1.2 Kompiuteriniai žaidimai ............................................................................................................... 4 1.3 Analogai ........................................................................................................................................ 5 1.4 Kosminis žingsninis strateginis žaidimas...................................................................................... 8 2. Projektinė dalis ..................................................................................................................................................... 9 2.1. Įrankių ir priemonių
    [Show full text]
  • No Supernovae Associated with Two Long-Duration Γ-Ray Bursts
    1 No supernovae associated with two long-duration γ-ray bursts Johan P. U. Fynbo1, Darach Watson1, Christina C. Thöne1, Jesper Sollerman1,2, Joshua S. Bloom3, Tamara M. Davis1, Jens Hjorth1, Páll Jakobsson4, Uffe G. Jørgensen5, John F. Graham6, Andrew S. Fruchter6, David Bersier7, Lisa Kewley8, Arnaud Cassan9, José María Castro Cerón1, Suzanne Foley10, Javier Gorosabel11, Tobias C. Hinse5, Keith D. Horne12, Brian L. Jensen1, Sylvio Klose13, Daniel Kocevski3, Jean-Baptiste Marquette14, Daniel Perley3, Enrico Ramirez-Ruiz15,16, Maximilian D. Stritzinger1, Paul M. Vreeswijk17,18, Ralph A. M. Wijers19, Kristian G. Woller5, Dong Xu1, Marta Zub6 1Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 2Department of Astronomy, Stockholm University, Sweden 3Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720, USA 4Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AB, UK 5Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA 7Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK 2 8University of Hawaii, Institute of Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, US 9Astronomisches Rechen-Institut (ARI), Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchof Str.
    [Show full text]
  • Cviewoftherestlesssn2009ip Reveals the Explosive Ejection of a Massive Star Envelope Margutti, R., Et Al
    1 Peter J. Brown Office Address Contact Information M311 Mitchell Institute for Fundamental Physics and Astronomy E-mail: [email protected] Department of Physics & Astronomy, Texas A&M University Cell: (979) 402-4523 Skype: grbpeter 4242 TAMU, College Station, TX 77843 www.linkedin.com/in/peter-brown-supernova Highlights Observational Astrophysicist with experience in ground and space-based Ultraviolet and• Optical Photometry and Spectroscopy of Supernovae and other Transients Leader of Swift supernova team since 2005 and Swift Cycle 14 Key Project • PI of 5 Hubble Space Telescope Programs • Principal Investigator of External Grants Totaling over $2,600,000 • 18 Refereed, First Author Journal Articles, 140+ Coauthored Journal Articles • 2017 Texas A&M College of Science Undergraduate Research Mentoring Award • Education Ph.D. in Astronomy & Astrophysics – Pennsylvania State University August 2009 Thesis Title: “The Ultraviolet Properties of Supernovae” Thesis Advisor: Dr. P. W. A. Roming B.S. in Physics and Astronomy – Brigham Young University August 2004 Senior Thesis Title: “Observing Gamma Ray Burst Afterglows from BYU’s Orson Pratt Observatory” Thesis Advisor: Professor J. W. Moody Academic Research Scientist – Mitchell Institute, Texas A&M University 2016 – present Positions Visiting Associate Professor Spring 2020 Visiting Assistant Professor Spring 2018 Mitchell Fellow, Postdoctoral Research Associate 2012 – 2016 Supervisor: Professor Lifan Wang Postdoctoral Research Associate – University of Utah 2009 – 2012 Supervisor: Professor
    [Show full text]
  • Liverpool Telescope 2: a New Robotic Facility for Rapid Transient Follow-Up
    Noname manuscript No. (will be inserted by the editor) Liverpool Telescope 2: a new robotic facility for rapid transient follow-up C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. Carter · N.R. Clay · C.A. Collins · M.J. Darnley · C.J. Davis · C.M. Gutierrez · D.J. Harman · P.A. James · J.H. Knapen · S. Kobayashi · J.M. Marchant · P.A. Mazzali · C.J. Mottram · C.G. Mundell · A. Newsam · A. Oscoz · E. Palle · A. Piascik · R. Rebolo · R.J. Smith Received: date / Accepted: date Abstract The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astro- physical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D.
    [Show full text]
  • Short Burst GRB 060614
    ARTICLE Received 8 Oct 2014 | Accepted 27 Apr 2015 | Published 11 Jun 2015 DOI: 10.1038/ncomms8323 OPEN A possible macronova in the late afterglow of the long–short burst GRB 060614 Bin Yang1,2, Zhi-Ping Jin1, Xiang Li1,2, Stefano Covino3, Xian-Zhong Zheng1, Kenta Hotokezaka4, Yi-Zhong Fan1,5, Tsvi Piran4 & Da-Ming Wei1 Long-duration (42s) g-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyn´ski macronova—the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole–neutron star merger but a double neutron star merger cannot be ruled out. 1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China. 2 University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China. 3 INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate, Italy. 4 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
    [Show full text]
  • Noao Annual Report Fy07
    AURA/NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 Emission nebula NGC6334 (Cat’s Paw Nebula): star-forming region in the constellation Scorpius. This 2007 image was taken using the Mosaic-2 imager on the Blanco 4-meter telescope at Cerro Tololo Inter- American Observatory. Intervening dust in the plane of the Milky Way galaxy reddens the colors of the nebula. Image credit: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 NOAO Gemini Science Center .............................................................................. 2 GNIRS Infrared Spectroscopy and the Origins of the Peculiar Hydrogen-Deficient Stars...................... 2 Supermassive Black Hole Growth and Chemical Enrichment in the Early Universe.............................. 4 1.2 Cerro Tololo Inter-American Observatory (CTIO)................................................ 5 The Nearest Stars.......................................................................................................................................
    [Show full text]
  • The Afterglows of Swift-Era Short and Long Gamma-Ray Bursts
    The Afterglows of Swift-era Short and Long Gamma-Ray Bursts Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨atJena eingereicht von Dipl.-Phys. David Alexander Kann geboren am 15.02.1977 in Trier Gutachter 1. Prof. Dr. Artie Hatzes, Th¨uringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg 2. Prof. Dr. J¨orn Wilms, Dr. Remeis-Sternwarte, Sternwartstraße 7, 96049 Bamberg 3. PD Dr. Hans-Thomas Janka, Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching Tag der letzten Rigorosumspr¨ufung: 13. 07. 2011 Tag der ¨offentlichen Verteidigung: 13. 07. 2011 Zusammenfassung Das Ph¨anomen der Gammastrahlenausbr¨uche (Englisch: Gamma-Ray Bursts, kurz: GRBs) war auch lange nach ihrer Entdeckung vor ¨uber vier Jahrzehnten ein großes R¨atsel. Selbst heute, ¨uber ein Jahrzehnt seit Beginn der “Ara¨ der Nachgl¨uhen” (engl.: Afterglows) sind noch viele Fragen unbeantwortet. Das akzeptierte Bild, welches einen Großteil der Daten erkl¨aren kann ist, dass GRBs erzeugt werden, wenn ein massereicher Himmelsk¨orper (en- tweder ein Stern, der die Hauptreihe verlassen hat, oder miteinander verschmelzende kom- pakte Objekte) in kosmologischer Distanz zu einem schnell rotierenden Objekt kollabiert (ein Schwarzes Loch oder vielleicht ein kurzlebiger Magnetar), welches ultrarelativistische Materieausw¨urfe (sogenannte “Jets”) entlang der Polachse ausschleudert. Die interne Dissi- pation von Energie in dem Jet f¨uhrt zu kollimierter nicht-thermischer Strahlung bei hohen Energien (der eigentliche GRB), w¨ahrend Schockfronten, die bei der Interaktion des Jets mit der interstellaren Materie erzeugt werden, zu einem langlebigen abklingenden Afterglows f¨uhren. Die gesammelten physikalischen Prozesse, die die GRB-Emission beschreiben, werden als das Standard-Feuerballmodell bezeichnet.
    [Show full text]
  • Stephen M. Cabrinety Collection in the History of Microcomputing, Ca
    http://oac.cdlib.org/findaid/ark:/13030/kt529018f2 No online items Guide to the Stephen M. Cabrinety Collection in the History of Microcomputing, ca. 1975-1995 Processed by Stephan Potchatek; machine-readable finding aid created by Steven Mandeville-Gamble Department of Special Collections Green Library Stanford University Libraries Stanford, CA 94305-6004 Phone: (650) 725-1022 Email: [email protected] URL: http://library.stanford.edu/spc © 2001 The Board of Trustees of Stanford University. All rights reserved. Special Collections M0997 1 Guide to the Stephen M. Cabrinety Collection in the History of Microcomputing, ca. 1975-1995 Collection number: M0997 Department of Special Collections and University Archives Stanford University Libraries Stanford, California Contact Information Department of Special Collections Green Library Stanford University Libraries Stanford, CA 94305-6004 Phone: (650) 725-1022 Email: [email protected] URL: http://library.stanford.edu/spc Processed by: Stephan Potchatek Date Completed: 2000 Encoded by: Steven Mandeville-Gamble © 2001 The Board of Trustees of Stanford University. All rights reserved. Descriptive Summary Title: Stephen M. Cabrinety Collection in the History of Microcomputing, Date (inclusive): ca. 1975-1995 Collection number: Special Collections M0997 Creator: Cabrinety, Stephen M. Extent: 815.5 linear ft. Repository: Stanford University. Libraries. Dept. of Special Collections and University Archives. Language: English. Access Access restricted; this collection is stored off-site in commercial storage from which material is not routinely paged. Access to the collection will remain restricted until such time as the collection can be moved to Stanford-owned facilities. Any exemption from this rule requires the written permission of the Head of Special Collections.
    [Show full text]