The Afterglows of Swift-Era Short and Long Gamma-Ray Bursts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler -
University of Maryland Department of Astronomy College Park, Maryland
1 University of Maryland Department of Astronomy College Park, Maryland 20742 ͓S0002-7537͑93͒01551-3͔ This report covers the period 1 September 2001 to 30 MS degrees were earned by Jian Chen, Curtis Frank, Jian- September 2002. yang Li, and Robert Piontek. 1. PEOPLE The teaching and research staff consisted of Full Profes- 2. SERVICE AND RECOGNITION sors: Marvin Leventhal ͑chair to 30 June͒, Lee Mundy ͑chair Maryland’s cohort of asteroids nearly doubled this year from 1 July͒, Michael A’Hearn ͑Distinguished University with the naming of Careylisse, Grayzeck, Anne-raugh, and Professor͒, J. Patrick Harrington, Mukul Kundu, Dennis Pa- Derichardson, plus asteroids named for alumni Marla Moore padopoulos, William Rose, James Stone, John Trasco ͑asso- and Nalin Samarasinha. Student David Rupke received a ciate director͒, Virginia Trimble ͑visiting͒, Stuart Vogel, and Doctoral Dissertation Fellowship from the University. Other Andrew Wilson. major new grants during the year came from NSF ͑Miller - Associate professors: Douglas Hamilton, Andrew Harris, Dense matter, strong gravity, and accretion onto compact ob- Eve Ostriker, and Sylvain Veilleux. jects; Ostriker - Dynamical studies of molecular cloud for- Assistant professors: Stacy McGaugh, Coleman Miller, mation; McGaugh - Low surface brightness galaxies͒ and Chris Reynolds, and Derek Richardson. NASA ͑Richardson - Origins and PG&G programs; McFad- Instructors: Grace Deming and David Theison. den, part of the team for a new Discovery Mission called Professors Emeriti: Roger Bell, James Earl, William Dawn, scheduled to take off in 2006 and orbit Vesta and Erickson, and Donat Wentzel. Ceres until 2015͒. Senior Research Scientists: Roger Bell, Charles Good- Prof. Vogel served as chair of the Visiting Committee for rich ͑now at Boston University͒, David Leisawitz ͑visiting͒, NRAO, operated by Associated Universities Incorporated. -
Modelling the Type Ic SN 2004Aw: a Moderately Energetic Explosion of a Massive C+O Star Without a GRB
MNRAS 469, 2498–2508 (2017) doi:10.1093/mnras/stx992 Advance Access publication 2017 April 28 Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C+O star without a GRB P. A. Mazzali,1,2‹ D. N. Sauer,3 E. Pian,4,5 J. Deng,6 S. Prentice,1 S. Ben Ami,7 S. Taubenberger2,8 and K. Nomoto9 1Astrophysics Research Institute, Liverpool John Moores University, IC2, 134 Brownlow Hill, Liverpool L3 5RF, UK 2Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei Munchen,¨ Germany 3German Aerospace Center (DLR), Institute of Atmospheric Physics, D-82234 Oberpfaffenhofen, Germany 4IASF-Bo, via Gobetti 101, I-40129 Bologna, Italy 5Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126 Pisa, Italy 6National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, Beijing 100012, China 7Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138, USA 8European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen,¨ Germany 9IPMU, Kashiwa, 277-8583, Japan Accepted 2017 April 21. Received 2017 April 20; in original form 2017 March 10 ABSTRACT An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN 2004aw is shown not to be ‘broad-lined’, contrary to previous claims, but rather a ‘fast-lined’ SN Ic. The spectral resemblance to the narrow-lined Type Ic SN 1994I, combined with the strong nebular [O I] emission and the broad light curve, points to a moderately energetic explosion of a massive C+O star. -
Staff, Visiting Scientists and Graduate Students 2010
Staff, Visiting Scientists and Graduate Students at the Pescara Center November 2010 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 31 Lecturers……………………………………………………………………………………..p. 67 Research Scientists ……………………………………………………………………….. p. 93 Short-term Visiting Scientists …………………………………………………………... p. 109 Long-Term Visiting Scientists …………………………………………………………... p. 129 IRAP Ph. D. Students …………………………………………………………………….. p. 141 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 161 Administrative and Secretarial Staff …………………………………………………… p. 171 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano ICRANet Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. ICRANet Ruffini Remo Università di Roma "Sapienza"and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics Moscow, Russia Christodoulou Dimitrios ETH, Zurich, Switzerland Coppi Bruno -
Astronomical Distances
The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3. -
Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates. -
No Supernovae Associated with Two Long-Duration Γ-Ray Bursts
1 No supernovae associated with two long-duration γ-ray bursts Johan P. U. Fynbo1, Darach Watson1, Christina C. Thöne1, Jesper Sollerman1,2, Joshua S. Bloom3, Tamara M. Davis1, Jens Hjorth1, Páll Jakobsson4, Uffe G. Jørgensen5, John F. Graham6, Andrew S. Fruchter6, David Bersier7, Lisa Kewley8, Arnaud Cassan9, José María Castro Cerón1, Suzanne Foley10, Javier Gorosabel11, Tobias C. Hinse5, Keith D. Horne12, Brian L. Jensen1, Sylvio Klose13, Daniel Kocevski3, Jean-Baptiste Marquette14, Daniel Perley3, Enrico Ramirez-Ruiz15,16, Maximilian D. Stritzinger1, Paul M. Vreeswijk17,18, Ralph A. M. Wijers19, Kristian G. Woller5, Dong Xu1, Marta Zub6 1Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 2Department of Astronomy, Stockholm University, Sweden 3Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720, USA 4Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AB, UK 5Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA 7Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK 2 8University of Hawaii, Institute of Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, US 9Astronomisches Rechen-Institut (ARI), Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchof Str. -
Arxiv:1909.05567V2 [Astro-Ph.HE] 25 Feb 2020
Astronomy & Astrophysics manuscript no. aanda c ESO 2020 February 26, 2020 The rise and fall of an extraordinary Ca-rich transient? The discovery of ATLAS19dqr/SN 2019bkc S. J. Prentice1; 2, K. Maguire1, A. Flörs3; 4; 5, S. Taubenberger3, C. Inserra6, C. Frohmaier7, T. W. Chen8, J. P. Anderson9, C. Ashall10, P. Clark2, M. Fraser11, L. Galbany12, A. Gal-Yam13, M. Gromadzki14, C. P. Gutiérrez15, P. A. James16, P. G. Jonker17, E. Kankare19, G. Leloudas20, M. R. Magee1, P. A. Mazzali16; 3, M. Nicholl21; 22, M. Pursiainen15, K. Skillen1, S. J. Smartt2, K. W. Smith2, C. Vogl3, and D. R. Young2. (Affiliations can be found after the references) Received xxx; accepted xxx ABSTRACT This work presents the observations and analysis of ATLAS19dqr/SN 2019bkc, an extraordinary rapidly evolving transient event located in an isolated environment, tens of kiloparsecs from any likely host. Its light curves rise to maximum light in 5 − 6 d and then display a decline of ∆m15 ∼ 5 mag. With such a pronounced decay, it has one of the most rapidly evolving light curves known for a stellar explosion. The early spectra show similarities to normal and ‘ultra-stripped’ type Ic SNe, but the early nebular phase spectra, which were reached just over two weeks after explosion, display prominent calcium lines, marking SN 2019bkc as a Ca-rich transient. The Ca emission lines at this phase show an unprecedented and unexplained blueshift of 10 000 – 12 000 km s−1. Modelling of the light curve and the early spectra suggests that the transient had a low ejecta mass of 0:2 − 0:4 M and a low kinetic energy 50 51 of (2 − 4) × 10 erg, giving a specific kinetic energy Ek=Mej ∼ 1 [10 erg]/M . -
EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville
EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville Thursday, March 25, 2010 The EBL is very difficult to observe directly because of foregrounds, especially the zodiacal light. Reliable lower limits are obtained by integrating the light from observed galaxies. The best upper limits come from (non-) attenuation of gamma rays from distant blazars, but these are uncertain because of the unknown emitted spectrum of these blazars. This talk concerns both the optical-IR EBL relevant to attenuation of TeV gamma rays, and also the UV EBL relevant to attenuation of gamma rays from very distant sources observed by Fermi and low-threshold ground- based ACTs. log dNγ/dE Just as IR light penetrates dust better than shorter wavelengths, so lower energy gamma rays penetrate the EBL better than higher energy, resulting in a softer observed gamma- ray spectrum from more distant sources. log E Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in UV Visible Light Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in IR Light Longer wavelength light penetrates the dust better Longer wavelength gamma rays also penetrate the EBL better Thursday, March 25, 2010 Gamma Ray Attenuation due to γγ e+e- If we know the intrinsic spectrum, we can infer the optical depth (E,z) from the observed spectrum. In -Γ practice, we assume that dN/dE|int is not harder than E with Γ = 1.5, since local sources have Γ ≥ 2. Thursday, March 25, 2010 Three approaches to calculate the EBL: Backward Evolution, which starts with the existing galaxy population and evolves it backward in time -- e.g., Stecker, Malkan, & Scully 2006. -
Arxiv:0902.2419V2 [Astro-Ph.HE] 6 Aug 2009 Ls Ntecr/AS R Ae Ntebimodal Diagram 1993) the Duration-Hardness Al
2009, ApJ, in press Preprint typeset using LATEX style emulateapj v. 08/22/09 DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF Z =6.7 GRB 080913, Z =8.3 GRB 090423, AND SOME SHORT/HARD GRBS Bing Zhang1, Bin-Bin Zhang1, Francisco J. Virgili1, En-Wei Liang2, D. Alexander Kann3, Xue-Feng Wu4,5, Daniel Proga1, Hou-Jun Lv2, Kenji Toma4, Peter Mesz´ aros´ 4,6, David N. Burrows4, Peter W. A. Roming4, Neil Gehrels7 Draft version October 2, 2018 ABSTRACT The two high-redshift gamma-ray bursts, GRB 080913 at z = 6.7 and GRB 090423 at z = 8.3, recently detected by Swift appear as intrinsically short, hard GRBs. They could have been recognized by BATSE as short/hard GRBs should they have occurred at z 1. In order to address their physi- cal origin, we perform a more thorough investigation on two physica≤ lly distinct types (Type I/II) of cosmological GRBs and their observational characteristics. We reiterate the definitions of Type I/II GRBs and then review the following observational criteria and their physical motivations: supernova association, specific star forming rate of the host galaxy, location offset, duration, hardness, spectral lag, statistical correlations, energetics and collimation, afterglow properties, redshift distribution, lu- minosity function, and gravitational wave signature. Contrary to the traditional approach of assigning the physical category based on the gamma-ray properties (duration, hardness, and spectral lag), we take an alternative approach to define the Type I and Type II Gold Samples using several criteria that are more directly related to the GRB progenitors (supernova association, host galaxy type, and specific star forming rate). -
Cviewoftherestlesssn2009ip Reveals the Explosive Ejection of a Massive Star Envelope Margutti, R., Et Al
1 Peter J. Brown Office Address Contact Information M311 Mitchell Institute for Fundamental Physics and Astronomy E-mail: [email protected] Department of Physics & Astronomy, Texas A&M University Cell: (979) 402-4523 Skype: grbpeter 4242 TAMU, College Station, TX 77843 www.linkedin.com/in/peter-brown-supernova Highlights Observational Astrophysicist with experience in ground and space-based Ultraviolet and• Optical Photometry and Spectroscopy of Supernovae and other Transients Leader of Swift supernova team since 2005 and Swift Cycle 14 Key Project • PI of 5 Hubble Space Telescope Programs • Principal Investigator of External Grants Totaling over $2,600,000 • 18 Refereed, First Author Journal Articles, 140+ Coauthored Journal Articles • 2017 Texas A&M College of Science Undergraduate Research Mentoring Award • Education Ph.D. in Astronomy & Astrophysics – Pennsylvania State University August 2009 Thesis Title: “The Ultraviolet Properties of Supernovae” Thesis Advisor: Dr. P. W. A. Roming B.S. in Physics and Astronomy – Brigham Young University August 2004 Senior Thesis Title: “Observing Gamma Ray Burst Afterglows from BYU’s Orson Pratt Observatory” Thesis Advisor: Professor J. W. Moody Academic Research Scientist – Mitchell Institute, Texas A&M University 2016 – present Positions Visiting Associate Professor Spring 2020 Visiting Assistant Professor Spring 2018 Mitchell Fellow, Postdoctoral Research Associate 2012 – 2016 Supervisor: Professor Lifan Wang Postdoctoral Research Associate – University of Utah 2009 – 2012 Supervisor: Professor -
Liverpool Telescope 2: a New Robotic Facility for Rapid Transient Follow-Up
Noname manuscript No. (will be inserted by the editor) Liverpool Telescope 2: a new robotic facility for rapid transient follow-up C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. Carter · N.R. Clay · C.A. Collins · M.J. Darnley · C.J. Davis · C.M. Gutierrez · D.J. Harman · P.A. James · J.H. Knapen · S. Kobayashi · J.M. Marchant · P.A. Mazzali · C.J. Mottram · C.G. Mundell · A. Newsam · A. Oscoz · E. Palle · A. Piascik · R. Rebolo · R.J. Smith Received: date / Accepted: date Abstract The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astro- physical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D.