CADMIUM (Properties of the Element and Common Binary Componds)

Total Page:16

File Type:pdf, Size:1020Kb

CADMIUM (Properties of the Element and Common Binary Componds) 20 20 Name MW bp °C/mm (mp) D4 nD CADMIUM (properties of the element and common binary componds) Cadmium (elemental) Cadmium II Oxide Cadmium II Sulfide (α-form) Atomic number: 48 Atomic/molecular weight: 112.4 128.41 144.46 CAS #: 7440-43-9 1306-19-0 1306-23-6 Thermal Properties Melting point: 321.07˚C 1540˚ - sublimes 980˚ - sublimes Enthalpy of melting: 6.2 kJ/mole 243.5 kJ/mole - sublimes 201.7 kJ/mole Boiling point: 767˚C 2,980˚C Enthalpy of vaporization: 99.7 kJ/mole Thermal conductivity, 25˚C: 96.6 W/(m K) Heat capacity, 20˚: 25.9 J/kg˚ 43.4 J/mol˚K Electrical Properties Resistivity, 22˚: 7.27 μΩ·cm 400˚: 34.1 μΩ·cm 795˚: 67.3 W-m Electrode potential (st'd hydrogen scale): -0.402 V Dielectric constant: 17.2 9.5-10.3 Dielectric strength: Bandgap energy: 222 kJ/mole Optical Properties Reflectivity: 0.67 Refractive index; α 2.49 2.506 β γ 2.529 Acoustical Properties Velocity of sound: 2,310 m/s Bulk Properties Specific gravity, 20˚: 8.65 8.15 4.82 Molar volume: 13.00 cm3 Young's modulus: 50,000 MPa Tensile strenstrength:gth: 71 MPaa Hardness, Mohs: 2.0 Crystal form: Hexagonal Cubic Hexagonal Space group: Cell parameters, a: 297.93 pm 469.53 pm 413.48 pm b: 674.9 pm c: 561.81 pm α: β: Chemical Properties Oxidation states: 0, 1, 2 Electronegativity, Pauling: 1.7 Ionization potential, spectral: 8.993 eV 16.908 eV Schematic of CdS/CdTe based solar cell アヅマックス株式会社 TEL 03-5543-1630 FAX 03-5543-0312 [email protected] 20 20 Name MW bp °C/mm (mp) D4 nD COMPOUNDS CXCD010 劇物 CADMIUM ACETATE, dihydrate 230.49/266.54 (254-6) 2.01 C H CdO ·2H O TOXICITY: oral rat, LD50: 360 mg/kg O 4 6 4 2 - +2 Dehydrates >135° Solubility, water, 20°: 347 g/l H C C O Cd 3 2 Produces irridescent effects in porcelains Solubility of anhydrous salt, methanol: 130 g/l 1 Forms CdS nanoparticles with Na2S. Precursor for shape controlled CdSe nanocrystals.2 1. Nemeth, J. et al. Colloid. Polym. Sci . 2000, 278 , 211. 2. Liu, L. et al. J. Am. Chem. Soc. 2009, 131 , 16423. HYDROLYTIC SENSITIVITY: 4: no reaction with water under neutral conditions [5743-04-4] TSCA HMIS: 3-1-0-X 25g¥7,500 100g ¥14,300 AKC159.8 劇物 (既)2-1843 CADMIUM DIETHYLDITHIOCARBAMATE, 96% 408.94 (63-9) 1.48 C10H20CdN2S4 TOXICITY: oral rat, LD50: 900 mg/kg Soluble: toluene, chloroform Forms CdS films for solar cells by thermal decomposition >350°.1 CH3CH2 S S CH2CH3 N C Cd CN Forms CdS nanowires on treatment with ethylenediamine at 117°C.2 S CH3CH2 S CH2CH3 3 In combination with (EtO)4Si forms SiO2·CdS nanocomposites. 1. Tsuji, M. et al. Jpn. Patent 10 284,744, 1997; Chem. Abstr. 129, 333306. 2. Yan, P. et al. Chem. Comm . 1999, 1293. 3. Monteiro, O. et al. Chem. Mater. 2002, 14 , 2900. HYDROLYTIC SENSITIVITY: 4: no reaction with water under neutral conditions [14239-68-0] TSCA EC 238-113-4 HMIS: 4-2-0-X 25g¥14,300 100g ¥43,500 CXCD045 劇物 CADMIUM FORMATE 202.45 (>325) C H CdO TOXICITY: oral rat, LD50: 1,780 mg/kg O 2 2 4 Soluble: water Forms dihydrate - +2 (HC O )2 Cd Density of 83% aqueous solution: 2.3 Forms phosphors by firing mixtures with dopants.1 Forms CdS by reaction with thiourea in methanol.2 1. Chadha, S. U.S. Patent 6,042,746, 2000. 2. Stoev, M. et al. Monatsh. Chem . 1994, 125 , 1215. HYDROLYTIC SENSITIVITY: 5: forms reversible hydrate [4464-23-7] EC 224-729-0 HMIS: 4-2-0-X 25g ¥24,000 INCD070 劇物 (既)1-200 CADMIUM IODIDE 366.21 796 (387) 5.670 CdI2 TOXICITY: oral mus, LD50: 166 mg/kg CdI2 Soluble: ethanol, acetone, ether ΔHform: -203 kJ/mole Solubility, water, 25°: 860 g/l Employed in photolithography, phosphor manufacture [7790-80-9] TSCA EC 232-223-6 HMIS: 3-0-0-X 25g ¥12,500 AKC160 劇物 (既)2-2181 CH3 CADMIUM 2,4-PENTANEDIONATE, hydrate 310.64 (209-214 dec) C O C10H14CdO4·xH 2 O HC Cd Yellow powder C O 2 CH3 HYDROLYTIC SENSITIVITY: 4: no reaction with water under neutral conditions [14689-45-3] TSCA EC 238-730-9 HMIS: 3-1-0-X 10g¥20,500 50g ¥68,500 OMCD020 劇物 DIMETHYLCADMIUM 142.88 105.5 (-4.5) 1.986 1.5488 C2H6Cd Flashpoint: -18°C (0°F) CH Cd CH Vapor pressure, 20°C: 28.4 mm HIGHLY TOXIC 3 3 ΔHform: 15.2 kcal/mole Employed in thin film deposition of CdS and CdSe by MOCVD HYDROLYTIC SENSITIVITY: 9: reacts extremely rapidly with atmospheric moisture - may be pyrophoric - glove box or sealed system required [506-82-1] TSCA EC 208-055-4 HMIS: 4-4-3-X 25g inquire + cylinder or bubbler OMCD020.2 DIMETHYLCADMIUM, 10% in heptane 142.88 0.74 CH3 Cd CH3 C2H6Cd HIGHLY TOXIC HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [506-82-1] TSCA EC 208-055-4 HMIS: 4-4-2-X 250g inquire* * includes zCYL-L-0900 liquid dispensing cylinder アヅマックス株式会社 TEL 03-5543-1630 FAX 03-5543-0312 [email protected]@azmax.co.jpjp.
Recommended publications
  • Important Structures of AB2 Compounds
    Important Structures of AB2 compounds AB2 compounds have many different structures but many of them belong to one of the following 5 types. Fluorite (CaF2) The fluorite structure is very unique in so far as the close-packed ions are the cations and not the anions. In normal cases, the anion is the larger ion but in the case of CaF2, Ca is larger than F hence the structure is based on a cubic close-packing of the Ca2+ ions. There are 8 tetrahedral - holes in the unit cell of CaF2 and they are all occupied by F ions. One can notice that the only difference between fluorite and sphalerite (ZnS) is that in sphalerite only 4 of the tetrahedral holes are filled. Every fluorine anion is surrounded tetrahedrally by 4 calcium cations and every calcium cation is surrounded cubically by 8 flourine ions. In other words in the fluorite structure a (8,4)-coordination is observed. Antifluorite The antifluorite structure gets its name from the fluorite structure because it’s just the opposite i.e. the cations occupy the tetrahedral holes as compared to the anions in the fluorite structure. In this structure a cubic close-packing of the anions is observed. For example in K2O the cubic close-packing is made by oxide and the potassium occupy all 8 tetrahedral holes. The oxygen anions are surrounded by 8 potassium cations in a cubic way and the potassium cations are surrounded tetrahedrally by 4 oxygen ((4,8)-coordination). Cadmium Chloride (CdCl2) - In CdCl2 we have a cubic close-packed array of Cl ions.
    [Show full text]
  • Electronic Supplementary Material (ESI) for Chemcomm. This Journal Is © the Royal Society of Chemistry 2016
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016 Colloidal Atomic Layer Deposition Growth of PbS/CdS Core/Shell Quantum Dots Michel Nasilowski,a Lea Nienhaus,a Sophie N. Bertram,a Moungi. G. Bawendia,* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. *e-mail: [email protected] Supplementary Information Experimental methods Chemicals: Sulfur (Aldrich, 99.998%), oleylamine (OLA, Aldrich, technical grade 70%), lead chloride (PbCl2, Alfa-Aesar, 99.999%), hexanes (Omnisolv, 98.5%), formamide (FA, Sigma-Aldrich, >99%), ammonium sulfide ((NH4)2S, Strem, 40-44% aqueous solution), cadmium acetate dihydrate (Cd(Ac)2, Sigma-Aldrich 98%), cadmium oxide (CdO, Alfa-Aesar, 99.998%), oleic acid (OA, Alfa-Aesar, technical grade 90%) and tetracholorethylene (Alfa-Aesar, 99%) were used without further purification. Cd(OA)2: 1.28 g of cadmium oxide in 20 mL of oleic acid was heated at 160°C for 1 hour under nitrogen until colorless. The solution was then degassed under vacuum at 70°C for 30 min. Synthesis of PbS QDs: The synthesis of PbS QDs was adapted from a previously reported procedure.1,2 0.080g of sulfur in 7.5 mL OLA was heated at 120°C for 20 min under nitrogen bubbling and stirring. 0.83g of PbCl2 in 15 mL OLA was degassed for 30 minutes at room temperature, then under nitrogen, the temperature was increased to 120°C (with a vacuum pull at 110°C for ~5min). Once the temperature was stable at 120°C, 2.5mL of the sulfur solution was swiftly injected into the lead solution.
    [Show full text]
  • Oiv-Ma-As313-21.Pdf
    COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS - OIV Metatartaric acid Method OIV-MA-AS313-21 Type IV method Determination of the presence of metatartaric acid (Resolution Oeno 10/2007) 1. Introduction Metatartaric acid added to the wine to avoid tartaric precipitation is traditionally proportioned by the difference between the total tartaric acid following hot hydrolysis of metatartaric acid and natural tartaric acid preceding hydrolysis. However, taking into account the precision of the determination of tartaric acid, traces of metatartaric acid are not detectable by this method, and the additive, which is not accepted in certain countries, must therefore be characterised using a more specific method. 2. Scope Wines likely to contain traces of metatartaric acid. 3. Principle In relatively acid mediums, metatartaric acid forms an insoluble precipitate with cadmium acetate; it is the only one of all the elements present in must and wine to give such a precipitate . Note: Tartaric acid is also precipitated with cadmium acetate, but only in the presence of an alcohol content greater than 25% vol. The precipitate redissolves in water, unlike the precipitate obtained with metatartaric acid. The cadmium precipitate of metatartaric acid breaks down by heating with sodium hydroxide and releases tartaric acid. The latter produces a specific orange colour with ammonium metavanadate. 4. Reagents 4.1 Cadmium acetate solution at 5 p.100 4.1.1 Dihydrated cadmium acetate at 98% 4.1.2 Pure acetic acid 4.1.3 Distilled or demineralized water OIV-MA-AS313-21 : R2007 1 COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS - OIV Metatartaric acid 4.1.4 Cadmium acetate solution: dissolve 5 g of cadmium acetate (4.1.1) in 99 mL of water (4.1.3) add 1 mL of pure acetic acid (4.1.2) 4.2 Sodium hydroxide 1M 4.3 Sulfuric acid 1M 4.4 Solution of ammonium metavanadate 2% w/v 4.4.1 Ammonium metavanadate 4.4.2 Trihydrated sodium acetate at 99% 4.4.3 Sodium acetate solution at 27 p.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Qt4gj5w6d6 Nosplash 07E474c
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article Cite This: ACS Omega 2019, 4, 5486−5495 http://pubs.acs.org/journal/acsodf Mechanochemical Synthesis, Accelerated Aging, and Thermodynamic Stability of the Organic Mineral Paceite and Its Cadmium Analogue ‡ † ‡ † § ‡ § Shaodi Li, , Igor Huskic,́, Novendra Novendra, Hatem M. Titi, Alexandra Navrotsky,*, ‡ and Tomislav Frisčič*́, ‡ Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada § Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, One Shields Avenue, Davis, California 95616, United States *S Supporting Information ABSTRACT: We demonstrate the use of ball milling mechanochemistry for rapid, simple, and materials-efficient · synthesis of the organic mineral paceite CaCu(OAc)4 6H2O (where OAc− is the acetate ion), composed of coordination polymer chains containing alternating Ca2+ and Cu2+ ions, as · well as its cadmium-based analogue CaCd(OAc)4 6H2O. While the synthesis of paceite in aqueous solutions requires a high excess of the copper precursor, mechanochemistry permits the use of stoichiometric amounts of reagents, as well as the use of poorly soluble and readily accessible calcium carbonate or hydroxide reactants. As established by thermochemical measurements, enthalpies of formation of both synthetic paceite and its cadmium analogue relevant to the mechanochemical reactions are highly exothermic. Reactions can also be conducted using accelerated aging, a synthetic technique that mimics geological processes of mineral weathering. Accelerated aging reactivity involving copper(II) acetate monohydrate (hoganite) and calcium carbonate (calcite) provides a potential explanation of how complex organic minerals like paceite could form in a geological environment.
    [Show full text]
  • Properties of Cds Chemically Deposited Thin Films on the Effect of Ammonia Concentration
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 4, Issue 4 (Sep. - Oct. 2013), PP 01-07 www.iosrjournals.org Properties of CdS Chemically Deposited thin films on the Effect of Ammonia Concentration Munikrishna Reddy Y and Nagendra Vara Prasad M Department of Physics, S S B N Degree & PG College, Anantapuram – 515001, A.P Abstract : The effect of ammonia concentration on electrical properties, optical properties and structural properties of chemical bath deposited (CBD) Cadmium sulphide (CdS) thin films has been revealed. The films were prepared by using cadmium acetate as cadmium ion (Cd2+) source, thiourea as sulphur ion (S2-) source and ammonia as the complexing agent. Ammonia concentration was changed from 0.1 M – 3.0 M. Ammonia concentration at 2.0 M uniform, dense and continuously coated films were obtained. Not only typical cadmium- pure but also unusual sulphur deficiency phenomena were observed for CBD CdS thin films. In the present investigation, the carrier concentration varied form 1.831X106cm-3 to 1.026X106cm-3 when ammonia concentration is changed from 0.5M to 2.5 M. The direct band gap energy at 0.5M is 1.92eV while at 2.5M is 2.65eV. The surface morphology of as deposited thin films is almost smooth and no grains were observed clearly at low molar concentration and predominant grains at the concentration of ammonia is 2.0M. By estimated Cd:S ratio value is found to be 1.04 by using EDAX. The thin film deposited at 2.0M concentration shows the highest degree crystallinity.
    [Show full text]
  • Synthesis and Characterization of Surface-Capped, Size-Quantized Cds Clusters
    1322 J. Am. Chem. SOC.1990, I12, 1322-1 326 Synthesis and Characterization of Surface-Capped, Size-Quantized CdS Clusters. Chemical Control of Cluster Size Norman Henon,**+Ying Wang,+ and Hellmut Eckert* Contribution No. 4743 from E.I. du Pont de Nemouts & Company, Central Research and Development Department, P.O.Box 80328, Wilmington, Delaware 19880-0328, and Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106. Received May 8, I989 Abstract: Clusters of CdS in the quantum confinement regime C5O-A diameter are prepared in a rational technique whereby the cluster size and its distribution are controlled by chemical means. Competitive reaction chemistry between CdS core cluster growth and surface capping by thiophenolateleads to clusters whose core is essentially sphalerite CdS but whose reactive surface has been passivated by covalently attached phenyl groups. Adjustment of the sulfide to thiophenol ratio during synthesis takes advantage of the competitive reaction rates of these species with Cd ions to control the eventual cluster size. The clusters remain soluble in several organic solvents but may be isolated as stable powders and subsequently redissolved. The Cd "'NMR data for this series of capped clusters confirm the presence of sphalerite CdS as the cluster core and the increasing percentage of Cd involved in this core as the S/SPh ratio increases. Optical properties demonstrate well-behaved absorption edge and emission band shifts with development of exciton features as the clusters grow. Colloidal semiconductor species are currently under intense combustion (C + H) and atomic absorption were performed by Galbraith investigation as examples of nonmolecular materials that dem- Co., Knoxville, TN.
    [Show full text]
  • Formation of Single Phased Mixed Crystals from Aqueous Solutions - an Overview
    An archive of organic and inorganic chemical sciences DOI: 10.32474/AOICS.2020.04.000187 ISSN: 2637-4609 Review Article Formation of Single Phased Mixed Crystals from Aqueous Solutions - an Overview CK Mahadevan* Department of Physics, Bharathidasan University, India *Corresponding author: CK Mahadevan, Department of Physics, Bharathidasan University, India, E-mail: Received: February 03, 2020 Published: February 13, 2020 Abstract Single phased mixed crystals are normally formed from two or more isomorphous end member crystals with some conditions. However, in some circumstances, it is possible that such mixed crystals can be formed/prepared/grown from aqueous solutions even when the end member crystals are not isomorphous with each other. An overview of various studies made in this direction is presented in this article focusing the results reported by the present author’s research group. Keywords: Aqueous solutions; Crystal growth from solution; Mixed crystals; Quasi mixed crystals; Solid solutions Introduction Single crystals are solids with regular (three dimensionally available where various crystals ranging in size from small to large periodic) arrangement of the constituent atoms, ions or molecules technology. Also, it is known that there are several factories crystals are grown. However, further research in the preparation and characterization of crystalline materials and growth of large preparation/growth of single crystals means careful arrangement into some fixed and rigid pattern known as a lattice. So, formation/ size crystals is very much necessary for our social requirements. of atoms, ions or molecules in a particular three-dimensional order. The most important question now is: How to tune or stimulate the There are four major categories of crystal growth methods, viz.
    [Show full text]
  • Attachment 3-1 Guidance for Developing Ecological Soil
    Attachment 3-1 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs) Eco-SSL Standard Operating Procedure (SOP # 1): Plant and Soil Invertebrate Literature Search and Acquisition OSWER Directive 92857-55 November 2003 This page intentionally left blank OVERVIEW Currently, there is a lack of clear guidance in setting terrestrial effect thresholds when conducting risk assessments. Without an EPA-approved, peer-reviewed, ecologically-based terrestrial effect database, the process to develop thresholds is problematic both to EPA, other federal agencies, states, and concerned private parties. Identification of published toxicity studies on invertebrates, microbial processes and plants is a key step in the derivation of benchmarks. The purpose of the Task Group 4, Standard Operating Procedure Number 1: Literature Search and Acquisition (referred to as TG4-SOP#1) is to document procedures used to identify and acquire potentially relevant toxicology literature for use in setting ecological soil screening levels. The literature search strategy is designed to locate worldwide terrestrial toxicity literature that includes the effects of chemicals of concern on terrestrial soil-dwelling invertebrates and plants. The literature acquisition process is designed to ensure timely acquisition of relevant publications. LITERATURE IDENTIFICATION Potentially relevant literature for developing ecological soil screening levels (Eco-SSLs) is identified by examining hard copies of relevant journals, bibliographies and guidance publications and through the use of a comprehensive computerized literature search strategy. These procedures are designed to locate worldwide terrestrial toxicology literature that includes the effects of specific toxic substances with an emphasis on exposure via soil. Paper-based Literature Identification The paper-based literature identification process includes the scanning of relevant review article bibliographies and key journals held in the U.S.
    [Show full text]
  • Of a Rhombohedral (Pseudocubic) Unit of Structure with a = 5.08 a and a = 90
    VOL. 15, 1929 CHEMISTRY: L. PA ULING 709 TABLE 2 TUMPER- LOG K02 LOG KO0 LOG KON ATURS L AND R, B AND R, B AND R, ABS. p. 485 p. 96 LOG KOHB p. 96 LOG KOHV LOG KiB LOG KV LOG K4B LOG K4V 1000 -19.8 -20.1 -21.8 -21.1 -15.5 +1.95 -4.35 +2.74 -3.55 1300 -13.9 -14.01 -15.2 -14.3 -10.34 +1.31 -3.53 +0.30 -4.54 1500 -11.2 -11.42 -12.24 -11.4 - 8.05 +1.03 -3.16 -0.79 -4.98 1705 - 9.13 - 9.28 - 9.95 - 9.0 - 6.26 +0.81 -2.87 -1.66 -5.35 1900 - 7.55 - 7.6 - 8.21 - 7.2 - 4.90 +0.65 -2.66 -2.29 -5.60 interp. 2155 - 5.94 - 6.08 - 6.42 - 5.5 - 3.50 +0.48 -2.43 -2.99 -5.91 2505 - 4.27 - 4.31 - 4.59 - 3.5 - 2.08 +0.32 -2.19 -3.67 -6.18 20H > H2 + 02 + 14,000 cal. (B) 20H - 11 + 02 - 15,000 cal. (V) 1 Villars, J. Am. Chem. Soc., 51, 2374-7 (1929). 2 Dr. Langmuir has kindly pointed out that the knowledge of such equilibrium constants will be extremely useful in investigating the possibility of the direct formation of hydroxyl during the combustion of hydrogen and oxygen at high temperatures, an investigation which he is at present carrying on. Z. physik. Chem., 139A, 75-97 (1928). 4 Z.
    [Show full text]
  • 20210311 IAEG AD-DSL V5.0 for Pdf.Xlsx
    IAEGTM AD-DSL Release Version 4.1 12-30-2020 Authority: IAEG Identity: AD-DSL Version number: 4.1 Issue Date: 2020-12-30 Key Yellow shading indicates AD-DSL family group entries, which can be expanded to display a non-exhaustive list of secondary CAS numbers belonging to the family group Substance Identification Change Log IAEG Regulatory Date First Parent Group IAEG ID CAS EC Name Synonyms Revision Date ECHA ID Entry Type Criteria Added IAEG ID IAEG000001 1327-53-3 215-481-4 Diarsenic trioxide Arsenic trioxide R1;R2;D1 2015-03-17 2015-03-17 100.014.075 Substance Direct Entry IAEG000002 1303-28-2 215-116-9 Diarsenic pentaoxide Arsenic pentoxide; Arsenic oxide R1;R2;D1 2015-03-17 2015-03-17 100.013.743 Substance Direct Entry IAEG000003 15606-95-8 427-700-2 Triethyl arsenate R1;R2;D1 2015-03-17 2017-08-14 100.102.611 Substance Direct Entry IAEG000004 7778-39-4 231-901-9 Arsenic acid R1;R2;D1 2015-03-17 2015-03-17 100.029.001 Substance Direct Entry IAEG000005 3687-31-8 222-979-5 Trilead diarsenate R1;R2;D1 2015-03-17 2017-08-14 100.020.890 Substance Direct Entry IAEG000006 7778-44-1 231-904-5 Calcium arsenate R1;R2;D1 2015-03-17 2017-08-14 100.029.003 Substance Direct Entry IAEG000009 12006-15-4 234-484-1 Cadmium arsenide Tricadmium diarsenide R1;R2;D1 2017-08-14 2017-08-14 Substance Direct Entry IAEG000021 7440-41-7 231-150-7 Beryllium (Be) R2 2015-03-17 2019-01-24 Substance Direct Entry IAEG000022 1306-19-0 215-146-2 Cadmium oxide R1;R2;D1 2015-03-17 2017-08-14 100.013.770 Substance Direct Entry IAEG000023 10108-64-2 233-296-7 Cadmium
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]