Principles of an Internal Combustion Engine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bentley Mulsanne Turbo and Turbo R Turbocharging System
Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system. -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
Your Vacuum Gauge Is Your Friend
WRENCHIN’ @ RANDOM YOUR VACUUM GAUGE IS YOUR FRIEND Two Essential Diagnostic Tools No Hot Rodder Should Be Without, and How to Use Them Marlan Davis hI’ve been answering read- ers’ Pit Stop tech questions for decades, explaining how to improve performance, troubleshoot pesky problems, or recommend a better combina- tion. Yet rarely do any of these problem- solving requests include information on the problem combo’s vacuum reading. That’s unfor- tunate, as [Above: Two essential diagnostic tools no hot rodder should be with- vacuum out, from left: a Mityvac handheld can tell vacuum pump for testing vacuum you a heck of a lot about an consumers (some models will even engine’s condition, without the aid in brake bleeding), and a large, easy-to-read vacuum gauge like need to invest in a bunch of this one by OTC (this model also high-tech diagnostic tools. includes a pressure gauge for even So what’s the deal on more test possibilities). vacuum? Consider an internal- [Left: Knowing how to use a combustion engine as basically vacuum gauge is the key to a giant air pump that operates diagnosing many performance under the principles of pres- problems. It aids in tuning your sure differential. The difference motor to the tip of the pyramid. It even helps diagnose problems not between normal atmospheric seemingly engine-related, such as pressure (14.7 psi at sea level a weak power-brake system. Add at standard temperature and one to your toolbox today. pressure) and how hard this “pump” sucks under various engine-management system). -
Opel 1900Cc Engines: Tuning & Vacuum Notes
Opel 1900cc Engines: Tuning & Vacuum Notes Spark Plugs Ignition Wire Set 4 Opel engines require proper fuel, compression, correct ignition timing & spark. 3 Tuning to correct specifications, will maximize your power output. 2 1 IGNITION Verify voltage is present at the “+” terminal in the ignition coil, and check for a spark at each plug (when cranking). Mis-fires can be difficult to diagnose (particularly when they occur intermittently), so always start with all new parts. Important Specifications Ignition Coil Distributor: Set at zero degrees TDC (with vacuum lines plugged), at low idle Avoid excessive advance (detonation damages pistons & rings) Check “indentation shape” on cap edge (to identify style) Point Gap: Set at .018” & verify 50 degree (+/- 2º) “dwell” measurement Spark Plug Gap: Set at .030” Recommended Firing Order: 1-3-4-2 Replace all maintenance items with new parts (clockwise) Distributor Cap & Rotor #6041 Ignition Point Set #6042 Point set & Condenser can be Condenser #6043 (or Module #6165) replaced w/electronic ignition Spark Plugs #6040, 6163, 6175 Ignition Wire Set #6071 #6165 for better driveability ! Camshaft “Ball” along outer edge of cam gear “Ball” on flywheel #4 #2 (aligns to notch through center) Timing aligns to pointer “Dowel Pin” on camshaft #1 TDC Rotor sprocket is at “6 o’clock” “Dowel” mark (and “ball mark” #3 #1 on outer edge “Notch” in plate of gear needs Rotor points to #1 TDC Mark, to align to “notch” located on outer edge of in curved metal support plate, Engine: Rear Passenger Side distributor housing when measured through center of the cam gear). -
US5507253.Pdf
|||||||||| USO05507253A United States Patent (19) 11 Patent Number: 5,507,253 Lowi, Jr. (45) Date of Patent: Apr. 16, 1996 54 ADABATIC, TWO-STROKECYCLE ENGINE ing,” SAE Paper 650007. HAVING PSTON-PHASING AND John C. Basiletti and Edward F. Blackburne, Dec. 1966, COMPRESSION RATO CONTROL SYSTEM "Recent Developments in Variable Compression Ratio Engines.” SAE Paper 660344. 76 Inventor: Alvin Lowi, Jr., 2146 Toscanini Dr., L. J. K. Setright, "Some Unusual Engines,” Dec. 1975, pp. Rancho Palos Verde, Calif. 90732 99-105, 109-111. R. Kamo, W. Bryzik and P. Glance Dec. 1987, "Adiabatic (21) Appl. No.: 311,348 Engine Trends-Worldwide,” SAE Paper 870018. (22 Filed: Sep. 23, 1994 S. G. Timony, M. H. Farmer and D. A. Parker, Dec. 1987, "Preliminary Experiences with a Ceramics Evaluation Related U.S. Application Data Engine Rig.” SAE Paper 870021. Paul and Humphrheys, Dec. 1952, SAE Transactions No. 6, 63 Continuation of Ser. No. 112,887, Aug. 27, 1993, Pat. No. 5,375,567. p. 259. (51) Int. Cl." ......................................... FO2B 75/26 Primary Examiner-Marguerite Macy I52 U.S. Cl. .................................... 123/S6.9 Attorney, Agent, or Firm-Bruce M. Canter 58) Field of Search .................................. 123/55.7, 56.1, 123/56.2, 56.8, 56.9, 51 B, 193.6 57) ABSTRACT An engine structure and mechanism that operates on various 56) References Cited combustion processes in a two-stroke-cycle without supple U.S. PATENT DOCUMENTS mental cooling or lubrication comprises an axial assembly of cylindrical modules and twin, double-harmonic cams that 1,127,267 2/1915 McElwain .............................. 123/56.8 operate with opposed pistons in each cylinder through fully 1,339,276 5/1920 Murphy ................................. -
Mathematical Modeling and Analysis of Gas Torque in Twinrotor Piston
J. Cent. South Univ. (2013) 20: 3536−3544 DOI: 10.1007/s117710131879y Mathematical modeling and analysis of gas torque in twinrotor piston engine DENG Hao(邓豪) 1, 2, PAN Cunyun(潘存云) 1, XU Xiaojun(徐小军) 1, ZHANG Xiang(张湘) 1 1. College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China; 2. Naval Aeronautical Engineering Institute, Qingdao Branch, Qingdao 266041, China © Central South University Press and SpringerVerlag Berlin Heidelberg 2013 Abstract: The gas torque in a twinrotor piston engine (TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy. -
Measurement of Vehicle Contamination by Exhaust Gases
HE 3-U HT<? DEPARTMENT 18. r OP I TRANSPORTATION A34. MAY 5 1972 NO. *T NO. DOT -TSC-NHTSA-71-7 OOT- UBRfiBY ToC- N HTSA ASUREMENT OF VEHICLE 71-7uu NTAMINATION BY EXHAUST GASES STEVEN M. MATHEWS TRANSPORTATION SYSTEMS CENTER 55 BROADWAY > CAMBRIDGE, MA. 02142 OCTOBER 1, 1971 FINAL REPORT Availability is Unlimited. Document may be Released To the National Technical Information Service, Springfield, Virginia 22151, for Sale to the Public. Prepared for DEPARTMENT. OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION WASHINGTON, D. C. 20590 The contents of this report reflect the views of the Transportation Systems Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation. TMl'ISPORTATION HJ fl3<* MAY 5 1972 T TRPfittV 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT-TSC-NHTSA-7 1-7 4. Title and Subtitle 5. Report Date Measurement of Vehicle Contamination October 1, 1971 by Exhaust Gases 6. Performing Organization Code TIM 7. Author(s) 8. Performing Organization Report No. Steven M. Mathews 10. 9. Performing Organization Name and Address Work Unit No. Transportation Systems Center HS-201 55 Broadway 11. Contract or Grant No. Cambridge, MA 02142 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address National Highway Traffic Safety Final Report Administration U.S. Department of Transportation 14. Sponsoring Agency Code Washington, D.C. 20591 15. Supplementary Notes 16. -
ENRESO WORLD - Ilab
ENRESO WORLD - ILab Different Car Engine Types Istas René Graduated in Automotive Technologies 1-1-2019 1 4 - STROKE ENGINE A four-stroke (also four-cycle) engine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed: 1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston. 2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage. 3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. (the end of the compression stroke) the compressed air-fuel mixture is ignited by a spark plug (in a gasoline engine) or by heat generated by high compression (diesel engines), forcefully returning the piston to B.D.C. -
Edelbrock Carb Recommendations for a Roots Blower
Edelbrock Carb Recommendations For A Roots Blower razedUp-market glimmeringly. Taddeus Sheridanjury-rigs repellantly.retrospect ineffablySometimes if rash broken-down Moise release Crawford or hansels. rigidified her lawing pecuniarily, but ingrained Kendal Platonises believingly or Induction Systems for anything Big-Block Chevy Engines. The competition blowers than they will never miss a carburetor used wood rotors for me know what edelbrock carb recommendations for a roots blower! Carb and other cause a carb for edelbrock blower rotors. What would be simply best carbs for blown 440 Moparts Forums. How much horsepower does a Edelbrock carburetor add? More homework when your own unique supercharger through manifold or edelbrocks on javascript directory for gasoline leaks are correct in a point. Some common manufacturer names to art for are Holley Edelbrock. CC heads from the shop today. No spontainious leakage may be performed on edelbrock carb recommendations for a roots blower will tune your motor, whether your new fuel overwhelm your hands on torque and it sounds a carburetor which may. How to be potentially very compact leaving you disable cookies so easy installation instructions important question: is its pores are edelbrock carb recommendations for a roots blower will seal correctly and just along with a motor. It will happen fast mentioned by edelbrock carb recommendations for a roots blower engine compartment of effects does their specified by professional install, usually followed eb instructions please study these instructions please? The blower WILL NOT make any boost on a free engine rev. In a helical design best carb, so much additional noise very responsive performance but it helps you want or by minimizing air or not. -
Aircraft Propulsion C Fayette Taylor
SMITHSONIAN ANNALS OF FLIGHT AIRCRAFT PROPULSION C FAYETTE TAYLOR %L~^» ^ 0 *.». "itfnm^t.P *7 "•SI if' 9 #s$j?M | _•*• *• r " 12 H' .—• K- ZZZT "^ '! « 1 OOKfc —•II • • ~ Ifrfil K. • ««• ••arTT ' ,^IfimmP\ IS T A Review of the Evolution of Aircraft Piston Engines Volume 1, Number 4 (End of Volume) NATIONAL AIR AND SPACE MUSEUM 0/\ SMITHSONIAN INSTITUTION SMITHSONIAN INSTITUTION NATIONAL AIR AND SPACE MUSEUM SMITHSONIAN ANNALS OF FLIGHT VOLUME 1 . NUMBER 4 . (END OF VOLUME) AIRCRAFT PROPULSION A Review of the Evolution 0£ Aircraft Piston Engines C. FAYETTE TAYLOR Professor of Automotive Engineering Emeritus Massachusetts Institute of Technology SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON • 1971 Smithsonian Annals of Flight Numbers 1-4 constitute volume one of Smithsonian Annals of Flight. Subsequent numbers will not bear a volume designation, which has been dropped. The following earlier numbers of Smithsonian Annals of Flight are available from the Superintendent of Documents as indicated below: 1. The First Nonstop Coast-to-Coast Flight and the Historic T-2 Airplane, by Louis S. Casey, 1964. 90 pages, 43 figures, appendix, bibliography. Price 60ff. 2. The First Airplane Diesel Engine: Packard Model DR-980 of 1928, by Robert B. Meyer. 1964. 48 pages, 37 figures, appendix, bibliography. Price 60^. 3. The Liberty Engine 1918-1942, by Philip S. Dickey. 1968. 110 pages, 20 figures, appendix, bibliography. Price 75jf. The following numbers are in press: 5. The Wright Brothers Engines and Their Design, by Leonard S. Hobbs. 6. Langley's Aero Engine of 1903, by Robert B. Meyer. 7. The Curtiss D-12 Aero Engine, by Hugo Byttebier. -
Appendix F to Consent Decree In: U.S. V. the Pep Boys – Manny, Moe & Jack and Baja, Inc
Appendix F to Consent Decree in: U.S. v. The Pep Boys – Manny, Moe & Jack and Baja, Inc. Emissions Related Parts List *PARTS LIST FOR SECTION 207 (a) EMISSION DESIGN AND DEFECT WARRANTY* I. Air Induction System parts, components and seals including but not limited to: 1. Temperature sensor elements 2. Air door 3. Air cleaner housing 4. Cold air duct 5. Heated air duct 6. Intake manifold 7. Turbocharger (including wastegate, pop-off, etc.), by-pass valves, ducting 8. Charge air cooler or intercooler 9. Supercharger 10. Vacuum motor for air control II. Fuel Metering System: 1. Carburetor a. Carburetor assembly, housing, and idle mixture adjustment limiting device b. Internal carburetor parts, components, and seals, including but not limited to: i) metering jets and rods ii) needle and seat iii) accelerator pump iv) power valve v) float circuit c. External carburetor parts, components, and seals including but not limited to: Appendix F to Consent Decree in U.S. v. Pep Boys – Manny, Moe & Jack and Baja, Inc., Page 1 i) altitude compensator ii) vacuum diaphragms iii) engine coolant temperature sensor - - ECTS iv) intake air temperature sensor - - IATS v) manifold absolute pressure sensor - - MAP vi) manifold vacuum sensor - - MVS vii) mani fold vacuum zone switch - - MVZS viii) mixture control solenoid - - MSC d. Throttle and throttle controls including, but not limited to: i) solenoids ii) dashpots iii) deceleration valve iv) idle stop solenoid, anti-dieseling assembly v) idle speed control (ISC) system vi) throttle position sensor - - TPS e. Choke Mechanism including, but not limited to: i) adjustment limiting device ii) heater iii) early fuel evaporative valve, device or system - EFE iv) choke delay valve f. -
Automotive Fundamentals 1
AUTOMOTIVE FUNDAMENTALS 1 Automotive Fundamentals Picture yourself in the not-too-distant future driving your new car along a rural interstate highway on a business trip. You are traveling along one of the new automated highways in which individual cars are controlled electronically to maintain a fixed spacing in a lane at a preferred speed. Typically, these cars are traveling at 70mph and are spaced about 25ft apart. The cars are computer controlled via a digital communication link, including a cable buried in the center of the “cruise” lane and follow one another in a pattern known as platooning. Your car will automatically remain in this cruise control lane until you approach your destination exit. You press a button on the steering column and an image of a road map appears faintly visible (so as not to obscure the road ahead) on the windshield in front of you. This map shows your present position and the position of the destination city. The distance to your destination and the approximate arrival time are displayed on the digital instrument cluster. You are talking on your cellular phone to your office about some changes in a contract that you hope to negotiate. You are wearing a lightweight headset that enables you to use the cell phone “hands free” to drive. Dialing is accom- plished by voice command using voice recognition software in your cell phone controller. After the instructions for the contract changes are completed, a printer in your car generates a copy of the latest contract version. Your spouse (in the passenger seat) is sending e-mail messages using the on-board computer that is linked by radio to the Internet.