Your Vacuum Gauge Is Your Friend

Total Page:16

File Type:pdf, Size:1020Kb

Your Vacuum Gauge Is Your Friend WRENCHIN’ @ RANDOM YOUR VACUUM GAUGE IS YOUR FRIEND Two Essential Diagnostic Tools No Hot Rodder Should Be Without, and How to Use Them Marlan Davis hI’ve been answering read- ers’ Pit Stop tech questions for decades, explaining how to improve performance, troubleshoot pesky problems, or recommend a better combina- tion. Yet rarely do any of these problem- solving requests include information on the problem combo’s vacuum reading. That’s unfor- tunate, as [Above: Two essential diagnostic tools no hot rodder should be with- vacuum out, from left: a Mityvac handheld can tell vacuum pump for testing vacuum you a heck of a lot about an consumers (some models will even engine’s condition, without the aid in brake bleeding), and a large, easy-to-read vacuum gauge like need to invest in a bunch of this one by OTC (this model also high-tech diagnostic tools. includes a pressure gauge for even So what’s the deal on more test possibilities). vacuum? Consider an internal- [Left: Knowing how to use a combustion engine as basically vacuum gauge is the key to a giant air pump that operates diagnosing many performance under the principles of pres- problems. It aids in tuning your sure differential. The difference motor to the tip of the pyramid. It even helps diagnose problems not between normal atmospheric seemingly engine-related, such as pressure (14.7 psi at sea level a weak power-brake system. Add at standard temperature and one to your toolbox today. pressure) and how hard this “pump” sucks under various engine-management system). that needs vacuum that—at that vacuum comes from the operating conditions and states If present, the distributor least on the surface—seemingly engine. If an engine is down on of tune creates vacuum (usually vacuum advance system also doesn’t tie directly into engine vacuum, these devices may not expressed in inches of mer- depends on vacuum. Many performance. These include function properly; conversely, cury, or in-hg). The amount of emission-control devices— vacuum consumers like the if the vacuum consumers have vacuum in the induction tract at including the EGR valve, evapo- power-brake vacuum booster, a problem, it creates a vacuum various operating points is used rative control system (ECS) automatic-transmission vacuum leak, degrading proper engine to properly meter fuel (through canister purge, and PCV valve— modulator, and classic-era operation. old analog devices like the car- likewise rely on consistent and HVAC (heating, ventilation, and Erratic or low-vacuum gauge buretor, or via a MAP sensor, correct engine vacuum. air conditioning) controls. All readings indicate there’s a real as part of a modern electronic Wait: There’s even more stuff need vacuum to operate, and problem with the engine or the “Vacuum is everything from a tuner’s standpoint. It’s the key to virtually every component.” — Norm Rollings 74 HOTROD.COM/2019/AUGUST/ WRENCHIN’ @ RANDOM THE NUMBERS ADJACENT TO SOME OF THE BOXES BELOW CORRESPOND TO THE PHOTOS ON PAGE 78. Steady needle at idle. Find the I. ABNORMAL BUT STEADY Reads steady vacuum READING AT IDLE low or steady high leak. compared to nominal. various interconnected vacuum your tune-up, check vacuum- devices. On an old-school powered external device opera- 6 Steady but low Steady but high motor, you can also gauge the tion, or begin homing in on a efficiency of the tune-up by the possible internal engine issue, Spray carb cleaner around the intake-manifold–to–cylinder- engine’s vacuum output. When the Rollings tell us you can head mounting surfaces and the carburetor–to–intake-manifold 1 it comes to high performance start with just two inexpensive mounting surface. Adjust carburetor idle fuel Reading of over 18 in-hg, There is a restriction in the air specifically, understanding your devices: a vacuum gauge and mixture screws to obtain especially on a hot rod, is cleaner. Replace air cleaner or highest vacuum reading. generally way too high. install larger air cleaner. engine’s vacuum characteristics a handheld vacuum pump. If aids in diagnosing mysterious 2 Idle mixture problems—like a power-brake screws Idle mixture screws do not respond to adjustment; idle mixture quality (vacuum and setup that somehow can’t stop respond to rpm) bad. Place hand or shop rag over the carburetor air horn. the car. adjustment To get the skinny on vacuum, we visited Rollings Automotive, Idle rpm momentarily speeds up. Replace the a family-owned, full-service faulty gaskets. Some carb mounting flanges Idle rpm lack material for getting a good seal. A metal does not automotive shop that works on momentarily 3 anything with wheels. Whether plate-type gasket might be the solution here. Quadrajet carbs are known to sometimes increase. Vacuum Some improvement, Car stalls Car you need to get a handle on leak through a loose or worn primary throttle increases to but vacuum is still out. Spray- continues shaft. Shaft bushing kits are available (requires the normal lower than desired. out air running. complete carburetor disassembly). range for Check ignition timing. bleeds with You have your vehicle: Add more initial lead carburetor a vacuum Stop, you’ve to achieve highest cleaner. leak. 5 7 Engines with found the vacuum, then back off Vacuum is now a separate problem. about ½ in-hg. Check idle circuit. On standard carbs Engines without a separate valley cover. within acceptable valley cover: There can still be range. Stop, the with the usual two idle mixture Idle screws screws, a big cam may result in a leak out the bottom (blind problem is solved, Idle screws side) of the intake into the but you may also now respond don’t unresponsive mixture screws and/ respond, or require turning in the idle speed engine valley. Pull the PCV need to refine the to adjustment, valve out and cap the breather centrifugal advance vacuum improves. but car does screw too far. Adjust the secondary not smell stop screw to increase rear blade side of the system. Spray carb Vacuum is curve amount Stop, you’ve found cleaner through the hole into and rate if you’ve the problem. rich. angle, then back off the primary- still low but side idle screw on the throttle shaft. the crankcase. steady. added in a bunch more initial timing (see “How Much Idle screws don’t respond to adjustment. Car also Motor speeds up Motor does not speed up Advance Do You 8 Need?” sidebar on smells rich, sounds loaded up, and/or belches black page 84). exhaust smoke at idle. Disconnect all The intake gasket vacuum hoses and Idle mixture Idle mixture screws remain is leaking out the plug all vacuum screws can now nonresponsive. The carb in its bottom. Replace. ports, or clamp Jumped or be adjusted. Stop, present state won’t work with all vacuum hoses Valve lifters incorrectly you’ve found the the rest of the combo. You shut. adjusted too tight. installed timing problem. have several choices. chain. Fix and repair as needed. Remove and inspect power valve (PV) located in the primary metering block on a Holley-style carburetor. Adjustable Net-lash Motor does not Motor speeds up. valvetrain valvetrain speed up. There Reconnect each Check the Wrong PV Blown (ruptured) PV 3 3 may be a serious vacuum hose one at a last-connected Drill a ⁄32- to ⁄16- Have a specialty Get the proper internal engine time until motor slows vacuum hose for inch hole in both carburetor shop high-end carb for back down. primary throttle trick-out the the application. At issue. cracks and holes. Your Holley-style blades. existing carb. a minimum, a high- carb’s power 4 end carb (such as a Holley HP or Ultra) Properly Determine and obtain the valve (PV) should open at half the If PV is correct for should have a four- adjust lifters. proper-length pushrod. the application, corner idle system engine’s normal Bad hose found. idle vacuum check to see if and replaceable air it both holds bleeds. Replace with number. For new hose. example, if a vacuum and opens big-cam engine when vacuum idles at 13 inches, drops to the value use a No. 6.5 PV. stamped on the valve. If it doesn’t, Otherwise, the Original hose checked None of the above fully resolves the issue. You may have a PV may open replace the PV. Vacuum not system-wide internal engine issue. Hold engine speed steady fully improved: good and/or vacuum prematurely and still doesn’t improve at 2,500 rpm for 15 seconds, then rapidly release the throttle. flood the motor. Continue testing Vacuum should momentarily increase a couple of inches. If it remaining vacuum after replacing hose. doesn’t increase or pulls down to zero, you’re looking at worn circuits as neces- Test vacuum consumer rings, cylinders, or valve seats; confirm with a cylinder sary one by one the hose connects to cranking compression test. Also see diagnostic tree II until issue is found using handheld vacuum on pages 80–81 and tree III on page 82. and resolved. pump. Replace with Still not right? new unit if device won’t Check the ignition. hold vacuum. 76 HOTROD.COM/2019/AUGUST/ HOTROD.COM/2019/AUGUST/ 77 WRENCHIN’ @ RANDOM THE BOX NUMBERS ABOVE THE PHOTOS CORRESPOND TO THE DIAGNOSTIC TREE I BOXES ON PAGES 76–77. See box 1 See box 2 See box 3 Norm Brandes A B B A [If the idle mixture screws don’t [Sometimes just spraying the air bleeds with carb cleaner helps free up respond, place a shop towel or idle system response.
Recommended publications
  • Bentley Mulsanne Turbo and Turbo R Turbocharging System
    Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system.
    [Show full text]
  • Mr. Gasket Catalog
    Restore. Restyle. Relive. PRODUCT CATALOG THE MR. GASKET STORY Back in 1964, Joe Hrudka was a drag racer in Northern Ohio who was looking to solve a problem that parts manufacturers had not addressed. Using his own 1957 Chevy drag race car as a test vehicle, he created a line of engine gaskets and fasteners proven to seal and withstand extreme temperatures, pressures and stresses created by high performance engines. This product line that was developed by a drag racer would evolve into a brand of legendary proportions over the next 50 years. Mr. Gasket started with Joe’s ‘57 Chevy and has continued to advance and expand with application coverage and even more new products for muscle cars. Head gaskets, exhaust gaskets and oil pan gaskets were just the beginning. The Mr. Gasket brand develops and distributes a variety of performance parts for your vehicle including: carburetor and fuel accessories, chrome-plated accessories, cooling system accessories, engine components, fuel additives, shifter accessories, specialty tools, suspension and driveline components. Located in Cleveland, Ohio, the Mr. Gasket team continues to design, develop, manufacture and distribute products that bring back the luster and performance that everyone remembers to a variety of auto projects. It may have started with a Chevrolet, but when you are ready to Restore, Restyle and Rebuild your car, Mr. Gasket is who you can trust to have the parts and advice you need to complete your project. Find out about all of the Mr. Gasket products and applications at www.mr-gasket.com www.mr-gasket.com TABLE OF CONTENTS CHEMICALS .......................................................................
    [Show full text]
  • Engine Control Unit
    Engine Control Unit João Filipe Ferreira Vicente Dissertation submitted for obtaining the degree in Master of Electronic Engineering, Instituto Superior Técnico Abstract The car used (Figure 1) has a fibreglass body and uses a Honda F4i engine taken from the Honda This paper describes the design of a fully CBR 600. programmable, low cost ECU based on a standard electronic circuit based on a dsPIC30f6012A for the Honda CBR600 F4i engine used in the Formula Student IST car. The ECU must make use of all the temperature, pressure, position and speed sensors as well as the original injectors and ignition coils that are already available on the F4i engine. The ECU must provide the user access to all the maps and allow their full customization simply by connecting it to a PC. This will provide the user with Figure 1 - FST03. the capability to adjust the engine’s performance to its needs quickly and easily. II. Electronic Fuel Injection Keywords The growing concern of fuel economy and lower emissions means that Electronic Fuel Injection Electronic Fuel Injection, Engine Control Unit, (EFI) systems can be seen on most of the cars Formula Student being sold today. I. Introduction EFI systems provide comfort and reliability to the driver by ensuring a perfect engine start under This project is part of the Formula Student project most conditions while lessening the impact on the being developed at Instituto Superior Técnico that environment by lowering exhaust gas emissions for the European series of the Formula Student and providing a perfect combustion of the air-fuel competition.
    [Show full text]
  • The Achates Power Opposed-Piston Two-Stroke Engine
    Gratis copy for Gerhard Regner Copyright 2011 SAE International E-mailing, copying and internet posting are prohibited Downloaded Wednesday, August 31, 2011 08:49:32 PM The Achates Power Opposed-Piston Two-Stroke 2011-01-2221 Published Engine: Performance and Emissions Results in a 09/13/2011 Medium-Duty Application Gerhard Regner, Randy E. Herold, Michael H. Wahl, Eric Dion, Fabien Redon, David Johnson, Brian J. Callahan and Shauna McIntyre Achates Power Inc Copyright © 2011 SAE International doi:10.4271/2011-01-2221 technical challenges related to emissions, fuel efficiency, cost ABSTRACT and durability - to name a few - and these challenges have Historically, the opposed-piston two-stroke diesel engine set been more easily met by four-stroke engines, as demonstrated combined records for fuel efficiency and power density that by their widespread use. However, the limited availability of have yet to be met by any other engine type. In the latter half fossil fuels and the corresponding rise in fuel cost has led to a of the twentieth century, the advent of modern emissions re-examination of the fundamental limits of fuel efficiency in regulations stopped the wide-spread development of two- internal combustion (IC) engines, and opposed-piston stroke engine for on-highway use. At Achates Power, modern engines, with their inherent thermodynamic advantage, have analytical tools, materials, and engineering methods have emerged as a promising alternative. This paper discusses the been applied to the development process of an opposed- potential of opposed-piston two-stroke engines in light of piston two-stroke engine, resulting in an engine design that today's market and regulatory requirements, the methodology has demonstrated a 15.5% fuel consumption improvement used by Achates Power in applying state-of-the-art tools and compared to a state-of-the-art 2010 medium-duty diesel methods to the opposed-piston two-stroke engine engine at similar engine-out emissions levels.
    [Show full text]
  • Pressure Sensors
    PRESSURE SENSORS Pressure Sensors Pressure sensors are used to measure intake manifold pressure, atmospheric pressure, vapor pressure in the fuel tank, etc. Though the location is different, and the pressures being measured vary, the operating principles are similar. Page 1 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved. PRESSURE SENSORS Manifold Absolute Pressure (MAP) Sensor In the Manifold Absolute Pressure (MAP) sensor there is a silicon chip mounted inside a reference chamber. On one side of the chip is a reference pressure. This reference pressure is either a perfect vacuum or a calibrated pressure, depending on the application. On the other side is the pressure to be measured. The silicon chip changes its resistance with the changes in pressure. When the silicon chip flexes with the change in pressure, the electrical resistance of the chip changes. This change in resistance alters the voltage signal. The ECM interprets the voltage signal as pressure and any change in the voltage signal means there was a change in pressure. Intake manifold pressure is a directly related to engine load. The ECM needs to know intake manifold pressure to calculate how much fuel to inject, when to ignite the cylinder, and other functions. The MAP sensor is located either directly on the intake manifold or it is mounted high in the engine compartment and connected to the intake manifold with vacuum hose. It is critical the vacuum hose not have any kinks for proper operation. Page 2 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved. PRESSURE SENSORS The MAP sensor uses a perfect vacuum as a reference pressure.
    [Show full text]
  • POLESTAR Systems
    POLE STAR Systems Engine Management Systems Overview: The POLE STAR HS engine management Although originally developed for the Mini A- system is a low cost yet highly sophisticated Series engine the systems can now be used on system, ranging from the basic 2D ignition-only virtually any engine including high revving system up to the full 3D Turbo Fuel Injection motorbike engines. The systems features System. include, • Supports up to 8 cylinders and 4 injector drivers • Fully sequential 4 cylinder operation supported with cam sensor • Special sequential twin-point fuel injection mode specifically designed for the A-Series engine (requires cam sensor) • Single point mode (multi-injector) • Low cost ignition only distributor-less versions also available • Direct crankshaft trigger for greater accuracy. Supports standard 36-1 trigger wheel or existing POLE STAR sensor and disk • Accurate control of ignition timing and fuelling. Timing/Fuelling adjusted with 8 load sites at every 500 rpm from 0-15000rpm with full interpolation. • Optional closed-loop fuelling with wideband lambda input • Integral ‘smooth-cut’ rev limiter • Optional ‘Boost Retard’ feature with integral MAP sensor for Turbo engines POLE STAR Systems, 31 Taskers Drive, Anna Valley, Andover, Hants, SP11 7SA web: www.polestarsystem.com Tel: 01264-333034 POLE STAR Systems depending on the system type. These are typically Details: a throttle position sensor, MAP sensor, water temperature sensor and inlet air temperature Originally developed and tested in conjunction sensor, usually the ECU canbe calibrated to use an with Bryan/Neil Slark of Slark Race Engineering engines existing temperature sensors. and Jon Lee of LynxAE using their dyno facilities.
    [Show full text]
  • Simulation Approaches for the Solution of Cranktrain Vibrations Pavel Novotný, Václav Píštěk, Lubomír Drápal, Aleš Prokop
    Simulation Approaches for the Solution of Cranktrain Vibrations PaveL NOVOTNÝ, VÁCLav PíštěK, LUBOMÍR DRÁPAL, ALEš PROKOP 10.2478/v10138-012-0006-8 SIMULATION APPROACHES FOR THE SOLUTION OF CRANKTRAIN VIBRATIONS PAVEL NOVOTNÝ, VÁCLAV PíštěK, LubOMÍR DRÁPAL, ALEš PROKOP Institute of Automotive Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic Tel.: +420 541 142 272, Fax: +420 541 143 354, E-mail: [email protected] SHRNUTÍ Vývoj moderních pohonných jednotek vyžaduje využívání pokročilých výpočtových metod, nutných k požadovanému zkrácení času tohoto vývoje společně s minimalizací nákladů na něj. Moderní výpočtové modely jsou stále složitější a umožnují řešit mnoho různých fyzikálních problémů. V případě dynamiky pohonných jednotek a životnosti jejich komponent lze využít několik různých přístupů. Prvním z nich je přístup zahrnující samostatné řešení každého subsystému pohonné jednotky. Druhý přístup využívá model pohonné jednotky obsahující všechny hlavní subsystémy, jako klikový mechanismus, ventilový rozvod, pohon rozvodů nebo vstřikovací čerpadlo, a řeší všechny tyto subsystémy současně i s jejich vzájemným ovlivněním. Cílem článku je pomocí vybraných výsledků prezentovat silné a slabé stránky obou přístupů. Výpočty a experimenty jsou prováděny na traktorovém vznětovém šestiválcovém motoru. KlíčOVÁ SLOVA: POHONNÁ JEDNOTKA, DYNAMIKA, VIBRACE, KLIKOVÝ mechANISMUS, NVH, MKP ABSTRACT The development of modern powertrains requires the use of advanced CAE tools enabling a reduction in engine development times and costs. Modern computational models are becoming ever more complicated and enable integration of many physical problems. Concentrating on powertrain dynamics and component fatigue, a few basic approaches can be used to arrive at a solution. The first approach incorporates a separate dynamics solution of the powertrain parts.
    [Show full text]
  • Developments in Precision Power Train Sensors
    109 Hitachi Review Vol. 63 (2014), No. 2 Developments in Precision Power Train Sensors Keiji Hanzawa OVERVIEW: The fuel economy and emissions performance demands on Shinobu Tashiro vehicle power trains are becoming more stringent for reasons relating Hiroaki Hoshika to global environmental protection and the rising price of oil. There has also been a change in thinking on the measurement of emissions and Masahiro Matsumoto fuel economy toward allowing for conditions where the temperature and humidity are closer to real driving conditions. Other changes include the electrifi cation of power trains, such as in hybrid vehicles, and improvements in the running effi ciency of internal combustion engines that result in more frequent use of engine operating modes in which sensor operation is more diffi cult, such as the Atkinson cycle. Hitachi Automotive Systems, Ltd. is supporting ongoing progress in power train control by making further improvements in sensor accuracy. INTRODUCTION Automotive power trains have made rapid progress HITACHI supplies customers around the world with on electrifi cation and reducing fuel consumption in a variety of systems for the driving, cornering, and recent years. This article describes advances in the braking of vehicles. By using a range of different performance of the sensors used in these power trains, sensors to determine conditions in the power train, looking at micro electromechanical system (MEMS) vehicle body movements, and what is happening air fl ow sensors that reduce the error in intake pulsation, around the vehicle, these systems ensure a driving the integration of air intake relative humidity sensors experience that is safe and comfortable, and that is and pressure sensors, and the adoption of digital signal conscious of the global environment (see Fig.
    [Show full text]
  • Cranfield University T Fong Maf to Map Based Engine
    CRANFIELD UNIVERSITY T FONG MAF TO MAP BASED ENGINE LOAD ANALOGY CONVERSION SCHOOL OF APPLIED SCIENCES MSc THESIS CRANFIELD UNIVERSITY SCHOOL OF APPLIED SCIENCES MSc THESIS Academic Year 2007-2008 T FONG MAF to MAP based engine load analogy conversion Supervisor: J Nixon September 2008 This thesis is submitted in partial 40% weighting fulfilment of the requirements for the Degree of Motorsport Engineering and Management © Cranfield University 2008. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ii Abstract In motorsport, high engine power output and engine responsiveness are often desired in order to gain competition advantage. The engine tuner will normally upgrade the standard vehicle with aftermarket components such as a higher rating turbo, a longer duration camshafts, and an exhaust system. As a result of the modifications, some of the standard sensors/actuators are not able to work efficiently. For example, air reversal flow and venting of excess air pressure caused by the aftermarket tuning devices can affect the reading accuracy of the mass air flow (MAF) sensor. This thesis is to develop an Engine Control Unit (ECU) system, which will replace the MAF sensor with a manifold absolute pressure (MAP) sensor to calculate the air flow into the engine. Enduring Solution Limited (ESL) seeks to develop the MAP based system into their existing programmable ECU, thus improve their market position. The challenge of the newly developed system is to be economically viable by minimising hardware and software alterations. The approach is to modify and correlate the load analogy in the system embedded code, while retaining the other comprehensive code designed by the original manufacturer.
    [Show full text]
  • PDF of Catalog
    Edition rd The Power Behind The Power 3 Marine & Industrial Accessories Guide Headquarters New England Carolinas Great Lakes 2365 Route 22, West 48 Leona Drive 4500 Northchase Pkwy., NE 1270 Kyle Court Union, NJ 07083 Middleborough, MA 02346 Wilmington, NC 28405 Wauconda, IL 60084 (908) 964-0700 (508) 946-9200 (910) 792-1900 (847) 526-9700 Fax: (908) 687-6725 Fax: (508) 946-0779 Fax: (910) 792-6266 Fax: (847) 526-9708 [email protected] [email protected] [email protected] [email protected] (800) MAC K-E N G • w w w.m a c k bo ring.c om • (8 00 ) MA C K-FAX TO OUR FRIENDS A Reputation Built On Dependable Service Since 1922 Dear Friends: As we enter into our 84th year in business, we still maintain the core values upon which Mack Boring was founded by our grandfather, Ed McGovern, Sr. Quality, Strong Support, Engineered Solutions, Superior Customer Service, and Added Value to the products we supply, has been the Mack Boring way. Mack Boring and the McGovern Family stand for Quality. We provide quality solutions, backed by quality support – with no compromise, to the challenges our customers face every day, and deliver high quality prod- ucts, services and resources. We hire high quality personnel. Mack Boring relentlessly strives to provide superior support in the form of friendly, technically-savvy customer service representatives in the field, or on the telephone when you call for parts or whole-goods. If you are performing a start-up or an application review, we will support your needs.
    [Show full text]
  • Article 2: F1600/F2000 2021 Technical Specifications
    ARTICLE 2: F1600/F2000 2021 TECHNICAL SPECIFICATIONS ! ARTICLE 2.1: F1600/F2000/Technical Specifications…...........pgs 2-28 Update 4-20-21 — 2.2.25.1 & 2.2.26.1 ARTICLE 2.2: Mazda MZR F2000/Technical Specifications…pgs 29-37 ! ! Article 2.1: F1600/F2000 Technical Specifications - 2021 ____________________________________________________________ These specifications are part of Formula Race Promotions (FRP) Competition Rules and all automobiles shall conform with these Specifications and FRP Pro Racing Rules (PRR). F1600, F2000, is intended to provide competitors and interested manufacturers with the opportunity to compete in purpose built, highly modified open wheel single seat cars. FRP may alter or adjust specifications and require, permit, or restrict certain specific components to equate competitive potential as deemed necessary. In an effort to control shock/damper technology and cost to a level reasonable for competitive racing, any fluid dampers are allowed, with the following restrictions: 1. Maximum of 4 dampers/shock absorbers per vehicle. 2. Dampers must be independent from each other with no interconnectivity. However, data acquisition is permissible, as long as it serves no other purpose. 3. Dampers must be manually adjustable only. 4. Mechatronic valves, G valves, hybrid inerters, inerters and mass dampers are prohibited. 5. Electro/Magnetic shock fluid is prohibited. F1600 and F2000 PREPARATION RULES - 2021 Definitions a. F1600: A formula for single-seat, tubular frame, flat bottom, open-wheel racing cars using standard Ford 1600 “crossflow” pushrod engines, or a Honda Fit 1500 (L15A7) overhead cam engine, with firewall, floor, and safety equipment conforming to the FRP PRR. b. F2000: A formula for single-seat, tubular frame, flat bottom, open-wheel racing cars using the Ford 2 liter single overhead camshaft “NE” series engine, the 1971-74 Pinto/Capri 2 liter single overhead camshaft engine, or the Ford Zetec ZX-3 2 liter dual overhead camshaft engine.
    [Show full text]
  • TECH GUIDE 1 1-5 Gaskets/Decks 4/15/09 10:51 AM Page 2
    2009 APRIL Pg 1 Head & Block Decks & Gaskets Pg 6 Cylinder Bores & Piston Rings Pg 12 Valves & Valve Seats Pg 16 Cam Bores, Bearings & Camshafts Circle 101 or more information 1-5 Gaskets/Decks 4/15/09 10:51 AM Page 1 ince the days of sealing Smooth Operation or chatter when it makes an interrupt- engines with asbestos, cork, How smooth is smooth enough? You ed cut. S rope and paper are, for the used to be able to tell by dragging For example, a converted grinder most part, ancient history, your fingernail across the surface of a may be able to mill heads and blocks. new-age materials and designs have cylinder head or engine block. And But the spindles and table drives in elevated the critical role gaskets and besides, it didn’t really matter because many of these older machines cannot seals play in the longevity of an the composite head gasket would fill hold close enough tolerances to engine. Finding the optimum sealing any gaps that your equipment or tech- achieve a really smooth, flat finish. material and design remain a chal- nique left behind. One equipment manufacturer said lenge many gasket manufacturers face But with MLS gaskets the require- grinding and milling machines that as engines are asked to do more. ments have changed. To seal properly, are more than five years old are prob- Gaskets that combine high per- a head gasket requires a surface finish ably incapable of producing consistent formance polymers with metal or that is within a recommended range. results and should be replaced.
    [Show full text]