Developments in Precision Power Train Sensors

Total Page:16

File Type:pdf, Size:1020Kb

Developments in Precision Power Train Sensors 109 Hitachi Review Vol. 63 (2014), No. 2 Developments in Precision Power Train Sensors Keiji Hanzawa OVERVIEW: The fuel economy and emissions performance demands on Shinobu Tashiro vehicle power trains are becoming more stringent for reasons relating Hiroaki Hoshika to global environmental protection and the rising price of oil. There has also been a change in thinking on the measurement of emissions and Masahiro Matsumoto fuel economy toward allowing for conditions where the temperature and humidity are closer to real driving conditions. Other changes include the electrifi cation of power trains, such as in hybrid vehicles, and improvements in the running effi ciency of internal combustion engines that result in more frequent use of engine operating modes in which sensor operation is more diffi cult, such as the Atkinson cycle. Hitachi Automotive Systems, Ltd. is supporting ongoing progress in power train control by making further improvements in sensor accuracy. INTRODUCTION Automotive power trains have made rapid progress HITACHI supplies customers around the world with on electrifi cation and reducing fuel consumption in a variety of systems for the driving, cornering, and recent years. This article describes advances in the braking of vehicles. By using a range of different performance of the sensors used in these power trains, sensors to determine conditions in the power train, looking at micro electromechanical system (MEMS) vehicle body movements, and what is happening air fl ow sensors that reduce the error in intake pulsation, around the vehicle, these systems ensure a driving the integration of air intake relative humidity sensors experience that is safe and comfortable, and that is and pressure sensors, and the adoption of digital signal conscious of the global environment (see Fig. 1). output for sensors with network connectivity. Air flow MAP sensor T-MAP sensor Medium/high Multi-function sensor air flow sensor pressure sensor Brake booster pressure sensor Speed sensor Boost pressure sensor Relative humidity sensor Exhaust temperature sensor Crank angle/ cam angle sensor Rotation angle sensor DPS Combined sensor Absolute velocity sensor Stroke sensor MAP: manifold absolute pressure T-MAP: temperature-MAP DPS: differential pressure sensor Fig. 1—Hitachi Power Train Sensors. Modern vehicle power trains incorporate a variety of sensors that are used by control systems to deliver maximum environmental performance. Improvements in sensor accuracy lead directly to better control system performance. - 54 - Hitachi Review Vol. 63 (2014), No. 2 110 MEMS AIR FLOW SENSORS ratio. A consequence of this is that reverse fl ow (air Since commercializing its first hot-wire air fl ow out from the engine) is very common. fl ow sensor in 1981, Hitachi has supplied a total of In Miller type Atkinson cycle engines, for example, 200 million air fl ow sensors of various types over which use valve timing control (VTC) to signifi cantly numerous generations. These have included the delay the intake valve close (IVC) timing angle, most MEMS air fl ow sensors(1) introduced in 2005 that use of the in-drawn air is expelled again by the piston, a silicon diaphragm detection element to measure resulting in reverse fl ow and stronger pulsation. Also, air fl ow in both directions. The second generation when an engine’s EGR ratio is raised, assuming the of these sensors currently in production operate the same total volume of air-fuel mixture is supplied to the detector at a higher temperature for better anti-fouling cylinder, the amount of air is reduced by the amount and use 5-V drive to reduce power consumption. The of exhaust gas used. For the sensors that measure the third generation of sensors are currently being set for air fl ow rate, this means that even if the size of the production. They are designed for lower cost and to pulsations remains the same, they become larger in achieve high precision when operating at a high level relative terms because of the reduction in mean air of intake pulsation. fl ow (see Fig. 2). Hitachi divides the pulsation amplitude by the Sensors for Engines with High Level of Intake mean forward air fl ow to quantify it as the pulsation Pulsation amplitude ratio. If the pulsation amplitude ratio The functions and performance sought in MEMS exceeds 200%, this indicates that there is a period in air fl ow sensors depend to a large extent on advances which the air fl ow is fully reversed. As improvements in the engines in which they are used. are made in engine performance, this pulsation When engines used the Otto cycle, the intake air amplitude ratio is rising with each new vehicle fl ow remained unidirectional (into the engine) over generation (see Fig. 3). most operating conditions. Modern engines, however, As advances in engines and engine control result in have features that include reduced pumping losses a strongly pulsing fl ow in the vicinity of the air fl ow through the use of a high exhaust gas recirculation sensors, techniques for reducing error are important (EGR) ratio, and use of the Miller cycle (a variation even in the case of MEMS air fl ow sensors that can on the Atkinson cycle) to provide a high expansion cope with bidirectional fl ow. Mechanism for large air flow pulsation in Atkinson cycle (or Miller cycle) engines Forward flow Reverse flow Indrawn air Intake valve still is forced open midway back out. through compression stroke. 180° CA 90° CA 90° CA Movement of piston Movement Fig. 2—Flow Pulsation Start of End of Midway through End of intake stroke intake stroke compression stroke compression stroke Mechanism. As Miller type Atkinson cycle Mechanism whereby EGR causes relative amplitude of pulsation to increase engines delay the intake valve close timing until the middle EGR valve EGR Low EGR ratio component High EGR ratio of the compression stroke, a A high EGR ratio Exhaust Exhaust means less intake air. large amount of air is forced back out the inlet, resulting Inlet air Lower mean quantity component Air of intake air in large pulsations. If a large Air EGR is used, the increased Larger relative amplitude of pulsation use of recirculated exhaust gas EGR reduces the amount of air taken in, making the pulsations larger EGR: exhaust gas recirculation CA: crank angle relative to the intake air. - 55 - 111 Developments in Precision Power Train Sensors Large pulsations 300 Small pulsations 200 100 Mean Pulsation amplitude ratio (%) = flow A Amplitude of pulsation B pulsation B Air flow (kg/h) Air flow Forward flow Amplitude of Mean flow A 0 Reverse flow −50 0 0.02 0.04 0.06 0.08 0.10 Time (s) Fig. 3—Flow Pulsation MEMS sensor Mechanism. HCCI throttle-less engine 1,000% Hot wire sensor For quantitative measurements, Hitachi defi nes the size of High degree of downsizing Large EGR ratio (low- pulsations in terms of their pressure EGR system) amplitude as a proportion of Supercharged downsized engine Size of engine pulsations mean air fl ow. This pulsation 500% Atkinson cycle amplitude ratio is increasing as Pulsation amplitude ratio Direct injection engines become more advanced, PFI and the accuracy of air fl ow Time measurement under pulsation 1980 1990 2000 2010 2020 2030 conditions is closely related to MEMS: micro electromechanical system HCCI: homogeneous charge compression ignition PFI: port fuel injection advances in engine control. Techniques for Reducing Air Flow and reverse directions, linearity processing in which Measurement Error Due to Pulsation the fl ow rate signal is converted to its physical amount The error that occurs when inlet pulsations are before applying correction, and precise temperature large is due to a number of causes. The output signal compensation for the pulsation characteristics. of the air fl ow sensor is required to always represent By optimizing the length of the secondary channel the mean forward air fl ow. Accordingly, however (the bypass through the sensor) and the inlet for accurate the sensor may be at measuring the forward reverse fl ow (outlet) to stabilize the air fl ow in the air fl ow, the overall sensor error will be large if there is detector, Hitachi has succeeded in providing suffi cient a measurement error in the reverse fl ow component or accuracy for trouble-free engine operation even under if this is not compensated for appropriately. Pulsation high levels of pulsation, such as pulsation amplitude error has a variety of causes which are always ratios approaching 1,000% at which the sensor signal interrelated, the main ones being the fl ow detector was unable to be used in the past (see Fig. 4). having a response that is too slow, non-linearity error (due to non-linear characteristics), and turbulence MULTI-FUNCTION AIR FLOW SENSORS error (when turbulence in the air fl ow sensor itself While the predominant confi guration has long causes suction when the fl ow reverses). been to connect different single-function sensors to While this has been dealt with in the past using the engine control unit (ECU), there is also growing correction measures such as conventional signal fi lter demand for combining multiple sensors in a single processing or by the shape of the bypass channel in the multi-function package and performing mutual air fl ow sensor, these provide inadequate correction for correction to improve their overall accuracy. In air fl ows with a very high level of pulsation. 2011, Hitachi became the fi rst supplier to commence To solve this problem, Hitachi Automotive production of a multi-function air fl ow sensor that Systems, Ltd. and Hitachi Research Laboratory also included a relative humidity sensor and pressure jointly developed an application-specifi c integrated sensor (see Fig.
Recommended publications
  • Engine Control Unit
    Engine Control Unit João Filipe Ferreira Vicente Dissertation submitted for obtaining the degree in Master of Electronic Engineering, Instituto Superior Técnico Abstract The car used (Figure 1) has a fibreglass body and uses a Honda F4i engine taken from the Honda This paper describes the design of a fully CBR 600. programmable, low cost ECU based on a standard electronic circuit based on a dsPIC30f6012A for the Honda CBR600 F4i engine used in the Formula Student IST car. The ECU must make use of all the temperature, pressure, position and speed sensors as well as the original injectors and ignition coils that are already available on the F4i engine. The ECU must provide the user access to all the maps and allow their full customization simply by connecting it to a PC. This will provide the user with Figure 1 - FST03. the capability to adjust the engine’s performance to its needs quickly and easily. II. Electronic Fuel Injection Keywords The growing concern of fuel economy and lower emissions means that Electronic Fuel Injection Electronic Fuel Injection, Engine Control Unit, (EFI) systems can be seen on most of the cars Formula Student being sold today. I. Introduction EFI systems provide comfort and reliability to the driver by ensuring a perfect engine start under This project is part of the Formula Student project most conditions while lessening the impact on the being developed at Instituto Superior Técnico that environment by lowering exhaust gas emissions for the European series of the Formula Student and providing a perfect combustion of the air-fuel competition.
    [Show full text]
  • Pressure Sensors
    PRESSURE SENSORS Pressure Sensors Pressure sensors are used to measure intake manifold pressure, atmospheric pressure, vapor pressure in the fuel tank, etc. Though the location is different, and the pressures being measured vary, the operating principles are similar. Page 1 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved. PRESSURE SENSORS Manifold Absolute Pressure (MAP) Sensor In the Manifold Absolute Pressure (MAP) sensor there is a silicon chip mounted inside a reference chamber. On one side of the chip is a reference pressure. This reference pressure is either a perfect vacuum or a calibrated pressure, depending on the application. On the other side is the pressure to be measured. The silicon chip changes its resistance with the changes in pressure. When the silicon chip flexes with the change in pressure, the electrical resistance of the chip changes. This change in resistance alters the voltage signal. The ECM interprets the voltage signal as pressure and any change in the voltage signal means there was a change in pressure. Intake manifold pressure is a directly related to engine load. The ECM needs to know intake manifold pressure to calculate how much fuel to inject, when to ignite the cylinder, and other functions. The MAP sensor is located either directly on the intake manifold or it is mounted high in the engine compartment and connected to the intake manifold with vacuum hose. It is critical the vacuum hose not have any kinks for proper operation. Page 2 © Toyota Motor Sales, U.S.A., Inc. All Rights Reserved. PRESSURE SENSORS The MAP sensor uses a perfect vacuum as a reference pressure.
    [Show full text]
  • POLESTAR Systems
    POLE STAR Systems Engine Management Systems Overview: The POLE STAR HS engine management Although originally developed for the Mini A- system is a low cost yet highly sophisticated Series engine the systems can now be used on system, ranging from the basic 2D ignition-only virtually any engine including high revving system up to the full 3D Turbo Fuel Injection motorbike engines. The systems features System. include, • Supports up to 8 cylinders and 4 injector drivers • Fully sequential 4 cylinder operation supported with cam sensor • Special sequential twin-point fuel injection mode specifically designed for the A-Series engine (requires cam sensor) • Single point mode (multi-injector) • Low cost ignition only distributor-less versions also available • Direct crankshaft trigger for greater accuracy. Supports standard 36-1 trigger wheel or existing POLE STAR sensor and disk • Accurate control of ignition timing and fuelling. Timing/Fuelling adjusted with 8 load sites at every 500 rpm from 0-15000rpm with full interpolation. • Optional closed-loop fuelling with wideband lambda input • Integral ‘smooth-cut’ rev limiter • Optional ‘Boost Retard’ feature with integral MAP sensor for Turbo engines POLE STAR Systems, 31 Taskers Drive, Anna Valley, Andover, Hants, SP11 7SA web: www.polestarsystem.com Tel: 01264-333034 POLE STAR Systems depending on the system type. These are typically Details: a throttle position sensor, MAP sensor, water temperature sensor and inlet air temperature Originally developed and tested in conjunction sensor, usually the ECU canbe calibrated to use an with Bryan/Neil Slark of Slark Race Engineering engines existing temperature sensors. and Jon Lee of LynxAE using their dyno facilities.
    [Show full text]
  • Cranfield University T Fong Maf to Map Based Engine
    CRANFIELD UNIVERSITY T FONG MAF TO MAP BASED ENGINE LOAD ANALOGY CONVERSION SCHOOL OF APPLIED SCIENCES MSc THESIS CRANFIELD UNIVERSITY SCHOOL OF APPLIED SCIENCES MSc THESIS Academic Year 2007-2008 T FONG MAF to MAP based engine load analogy conversion Supervisor: J Nixon September 2008 This thesis is submitted in partial 40% weighting fulfilment of the requirements for the Degree of Motorsport Engineering and Management © Cranfield University 2008. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ii Abstract In motorsport, high engine power output and engine responsiveness are often desired in order to gain competition advantage. The engine tuner will normally upgrade the standard vehicle with aftermarket components such as a higher rating turbo, a longer duration camshafts, and an exhaust system. As a result of the modifications, some of the standard sensors/actuators are not able to work efficiently. For example, air reversal flow and venting of excess air pressure caused by the aftermarket tuning devices can affect the reading accuracy of the mass air flow (MAF) sensor. This thesis is to develop an Engine Control Unit (ECU) system, which will replace the MAF sensor with a manifold absolute pressure (MAP) sensor to calculate the air flow into the engine. Enduring Solution Limited (ESL) seeks to develop the MAP based system into their existing programmable ECU, thus improve their market position. The challenge of the newly developed system is to be economically viable by minimising hardware and software alterations. The approach is to modify and correlate the load analogy in the system embedded code, while retaining the other comprehensive code designed by the original manufacturer.
    [Show full text]
  • Holley GM LS7 Street Single-Plane Intake Manifold Kits
    Holley GM LS7 Street Single-Plane Intake Manifold Kits 300-269 / 300-269BK LS7 Street Single-Plane Intake Manifold, Port-EFI W/Fuel Rails 300-270 / 300-270BK LS7 Street Single-Plane Intake Manifold, Carbureted/TB EFI INSTALLATION INSTRUCTIONS 199R11701 IMPORTANT: Before installation, please read these instructions completely. APPLICATIONS: The Holley LS Street single-plane intake manifolds are designed for GM LS7 engines used in retrofit engine installations into older classic/high performance cars and trucks. This product is intended for carbureted, throttle body EFI, or port EFI applications. The LS Street single-plane intake manifolds are produced for street and performance engine applications, 5.3 to 6.2+ liter displacement, and maximum engine speeds of 6000-7000 rpm, depending on the engine combination. The Street single-plane design provides the lowest carburetor/throttle body flange height possible while providing maximum performance to 7000 rpm. These intake manifolds are sold for (pre-emissions control) applications only and will not accept stock components and hardware. EMISSIONS EQUIPMENT: Holley LS Street single-plane intake manifolds do not accept any emission-control devices. This part is not legal for sale or use for motor vehicles with pollution-controlled equipment. IGNITION CONTROL: For intake manifold P/N’s 300-270 and 300-270BK, retrofit carbureted or throttle body EFI applications, ignition control will need to be accomplished with a separate ignition control module. It is recommended to use an MSD 6LS ignition controller, MSD P/N 6012 for LS7 (58 tooth crank trigger engines). The MSD ignition controller will function with the OE crank trigger, cam timing sensor, and coils.
    [Show full text]
  • Your Vacuum Gauge Is Your Friend
    WRENCHIN’ @ RANDOM YOUR VACUUM GAUGE IS YOUR FRIEND Two Essential Diagnostic Tools No Hot Rodder Should Be Without, and How to Use Them Marlan Davis hI’ve been answering read- ers’ Pit Stop tech questions for decades, explaining how to improve performance, troubleshoot pesky problems, or recommend a better combina- tion. Yet rarely do any of these problem- solving requests include information on the problem combo’s vacuum reading. That’s unfor- tunate, as [Above: Two essential diagnostic tools no hot rodder should be with- vacuum out, from left: a Mityvac handheld can tell vacuum pump for testing vacuum you a heck of a lot about an consumers (some models will even engine’s condition, without the aid in brake bleeding), and a large, easy-to-read vacuum gauge like need to invest in a bunch of this one by OTC (this model also high-tech diagnostic tools. includes a pressure gauge for even So what’s the deal on more test possibilities). vacuum? Consider an internal- [Left: Knowing how to use a combustion engine as basically vacuum gauge is the key to a giant air pump that operates diagnosing many performance under the principles of pres- problems. It aids in tuning your sure differential. The difference motor to the tip of the pyramid. It even helps diagnose problems not between normal atmospheric seemingly engine-related, such as pressure (14.7 psi at sea level a weak power-brake system. Add at standard temperature and one to your toolbox today. pressure) and how hard this “pump” sucks under various engine-management system).
    [Show full text]
  • The Pennsylvania State University Schreyer Honors College
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL & NUCLEAR ENGINEERING DESIGN AND CALIBRATION OF AN ELECTRONIC FUEL INJECTION SYSTEM FOR A COMPRESSED NATURAL GAS SPARK IGNITION INTERNAL COMBUSTION ENGINE IN A HYBRID VEHICLE SAMUEL H. MILLER SPRING 2013 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Mechanical Engineering with honors in Mechanical Engineering Reviewed and approved* by the following: Joel Anstrom Senior Research Associate at the Larson Institute Thesis Supervisor H.J. Sommer III Professor of Mechanical Engineering Honors Adviser Daniel Haworth Professor of Mechanical Engineering Faculty Reader * Signatures are on file in the Schreyer Honors College. ! ! ! ! !"#$%!&$' The United States has been dependent on foreign oil for many years. In 2011, the United States of America imported 45% of its petroleum from other nations [1]. In addition, efforts are being made to identify more eco-friendly options for fuel to serve as gasoline alternatives. One such fuel, which could decrease the United State dependence on foreign oil while helping the environment, is natural gas. An abundance of natural gas is found in the United States, and the burning of natural gas in internal combustion engines (ICE) releases less pollution and greenhouse gas emissions than gasoline. One of the most complex parts of natural gas ICE is the electronic fuel injection system. These systems are controlled by an electronic control unit (ECU), which is essential for optimizing engine efficiency, performance and emissions. The goal of this research was to reconfigure a hybrid-electric vehicle for compressed natural gas usage. ! ! "! ! ! ! ! TABLE OF CONTENTS LIST OF FIGURES AND TABLES..........................................................................................
    [Show full text]
  • Edelbrock Superchargers
    TECH ARTICLE TECHApplication: DISCUSSIONEdelbrock Superchargers E-Force Boost Measurement (Installing A Boost Gauge Or Pressure Tranducer) 1. The TMAP sensor mounted on top of the manifold at the rear of the driver's side, outputs a 0-5 volt signal through pins 1 & 2 (pin 1 is signal & pin 2 is signal return,) that can be converted to an absolute pressure reading using the below calibration curve. Use of this signal requires an ambient pressure correction for calculating boost pressure. Voltage Pressure 0.62 2.70 0.80 3.69 1.09 5.70 1.40 7.69 1.71 9.70 2.17 12.70 2.46 14.70 2.70 16.21 2.94 17.70 3.25 19.71 3.55 21.70 3.84 23.71 4.15 25.70 4.46 27.70 4.76 29.70 2. The second option is to utilize the pressure port at the rear of the passenger side intake runner flange. Your supercharger has been pre- drilled and tapped for a 1/8" NPT fitting. There is currently a plug sealing the hole, which can be removed, and replaced with a fitting to adapt to your sensor. CAUTION: Never cut into the vacuum lines leading to the fuel rail pressure sensor and bypass actuator, on the driver's side of the manifold, for the purpose of tapping in a boost gauge. Interruption of the vacuum signal to the fuel rail pressure sensor can affect the fuel pressure reading to the PCM, which can result in engine failure! Furthermore, this port reads pressure before the intercooler, and therefore is before the inherent intercooler pressure drop.
    [Show full text]
  • Virtual Sensor for Automotive Engine to Compensate for the Map, Engine Speed Sensors Faults
    Virtual Sensor For Automotive Engine To Compensate For The Map, Engine Speed Sensors Faults By Sohaub S.Shalalfeh Ihab Sh.Jaber Ahmad M.Hroub Supervisor: Dr. Iyad Hashlamon Submitted to the College of Engineering In partial fulfillment of the requirements for the degree of Bachelor degree in Mechatronics Engineering Palestine Polytechnic University March- 2016 Palestine Polytechnic University Hebron –Palestine College of Engineering and Technology Mechanical Engineering Department Project Name Virtual sensor for automotive engine to compensate for the map, engine speed sensors faults Project Team Sohaub S.shalalfeh Ihab Sh.Jaber Ahmad M.Hroub According to the project supervisor and according to the agreement of the testing committee members, this project is submitted to the Department of Mechanical Engineering at College of Engineering in partial fulfillments of the requirements of the Bachelor’s degree. Supervisor Signature ………………………….. Committee Member Signature ……………………… ……………………….. …………………… Department Head Signature ………………………………… I Dedication To our parents. To all our teachers. To all our friends. To all our brothers and sisters. To Palestine Polytechnic University. Acknowledgments We could not forget our families, who stood by us, with their support, love and care for our whole lives; they were with us with their bodies and souls, believed in us and helped us to accomplish this project. We would like to thank our amazing teachers at Palestine Polytechnic University, to whom we would carry our gratitude our whole life. Special thanks
    [Show full text]
  • Installation Instructions #63000 Striker Diesel MD Power Module 2001-2004 Chevrolet Duramax 6.6L Diesel
    2501 Ludelle Street Fort Worth, Texas 76105 817-244-6212 Phone • 817-244-4024 Fax 888-350-6588 Sales • 800-423-9696 Tech E-mail: [email protected] Web: www.painlessperformance.com Installation Instructions #63000 Striker Diesel MD Power Module 2001-2004 Chevrolet Duramax 6.6L Diesel 1st Edition July 2008 Copyright © 2008 by Perfect Performance Products, LLC 1 TABLE OF CONTENTS Section Page Introduction………….....................................................................................................................3 Engine Harness Installation……………………………………………………………………………………………………….4 FPS Sensor Location and Connection……………………..………………………………………………………………….4 Boost Sensor Location and Connection……………………………………………………………………………………….5 Firewall Penetration………………………………………………………………………………………………………………….6 Diesel MD Mounting………………………………………………………………………………………………………………….7 Thermocouple Connection…………………………………………………………………………………………………………8 12 Volt Power Connection………….…………………………..…………………………………………………………………9 Ignition Switch Connection………………………………………………………………………………………………………10 Ground Connection…………………………………………………………………………………………………………………11 Finalizing Installation………………………………………………………………………………………………………………11 Initial Start-up………………………………………………………………………………………………………………………..12 Idle Calibration……………………………………………………………………………………………………………………….13 EGT Warning LED Set-up…………………………………………………………………………………………………………14 LCD Brightness Set-up…………………………………………………………………………………………………………….14 LCD Contrast Set-up……………………………………………………………………………………………………………….14 LCD Display Selection……………………………………………………………………………………………………………..15
    [Show full text]
  • Intake Manifold Pressure Error at Idle
    SI 1013 For technical personnel only! 1/2 SERVICEINFORMATION INTAKE MANIFOLD PRESSURE ERRORS WHEN IDLING TROUBLESHOOTING IN VEHICLES WITH MAP SENSORS POTENTIAL COMPLAINTS: • Fluctuating idle speed • Loss of power • Jerking on acceleration • Malfunction indicator lamp lights up • Diagnostic trouble code P0105 – P0109 SITUATION Error messages relating to the intake manifold pressure often appear in petrol engines that have intake manifold pressure Intake manifold pressure sensor/MAP sensor measurement via a MAP sensor (MAP = Manifold Absolute Pressure). Deviation from the set-point values does not, however, lead to the diagnostic trouble code being stored in all operating states. DETERMINING THE SOURCE A scan tool can be used to compare the actual values with the set-point values. If the intake manifold pressure measured by the system deviates from the set-point value, the actual value must be checked using a separate vacuum pressure gauge. • If the measured intake manifold pressure is within the set-point values, the MAP sensor and the electrical lines must be checked. • If the measured intake manifold pressure is outside of the set-point values, the reason for the loss of pressure in the Intake manifold pressure sensors (red) in a VW Golf IV engine must be established (see test instruction below). All content including pictures and diagrams is subject to change. For assignment and replacement, refer to the current catalogues or systems based on TecAlliance. www.ms-motorservice.com © MS Motorservice International GmbH – EN – 08/15 (062018) OUR HEART BEATS FOR YOUR ENGINE. SI 1013 For technical personnel only! 2/2 Possible fault sources in the engine periphery Leaking intake manifolds downstream of the throttle valve (e.g.
    [Show full text]
  • Vehicle Prior to Using This Diagnostic Procedure. Review Strategy Based Diagnosis for an Overview of the Diagnostic Approach
    10/24/2019 DTC P0106 - 1.8L 2H0 • 2015 Buick Encore • MotoLogic Report a problem with this article Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diagnostic Procedure Instructions provides an overview of each diagnostic category. DTC Descriptor DTC P0106 Manifold Absolute Pressure (MAP) Sensor Performance Diagnostic Fault Information Short to High Short to Signal Circuit Ground Resistance Open Voltage Performance P0106, P0107, P0106, P0108, 5 V Reference P0106, P0107 P0107 P0106 P0697 P0697 Signal P0106, P0107 P0106, P0107 P0106, P0107 P0106, P0108* P0106, P1101 Low Reference — P0106, P0108 P0106, P0108 — P0106 * Internal ECM or sensor damage may occur if the circuit is shorted to B+. Typical Scan Tool Data MAP Sensor Circuit Short to Ground Open Short to Voltage Operating Conditions: Engine running at various operating conditions Parameter Normal Range: 12–103 kPa (1.7–14.9 PSI) (varies with altitude) 5 V Reference 0 kPa (0 PSI) 0 kPa (0 PSI) 128 kPa (18.6 PSI) Signal 0 kPa (0 PSI) 0 kPa (0 PSI) 128 kPa (18.6 PSI)* 80–128 kPa (11.6– Low Reference — — 18.6 PSI) * Internal ECM or Sensor damage may occur if the circuit is shorted to B+. MAP Sensor, if equipped with Turbocharger Circuits Short to Ground Open Short to Voltage https://www.motologic.com/car/2015_buick_encore_100302918/article/2015_buick_encore_100302918_e57f80a70cf2f66c118fae9ad49cd7f1?returnP… 1/6 10/24/2019 DTC P0106 - 1.8L 2H0 • 2015 Buick Encore • MotoLogic Circuits Short to Ground Open Short to Voltage Operating Conditions: Engine running at various operating conditions Parameter Normal Range: 12–225 kPa (1.7–32.6 PSI) (varies with altitude) 5 V Reference 0 kPa (0 PSI) 0 kPa (0 PSI) 255 kPa (36.9 PSI) Signal 0 kPa (0 PSI) 0 kPa (0 PSI) 255 kPa (36.9 PSI)* Low Reference — 255 kPa (36.9 PSI) — * Internal ECM or sensor damage may occur if the circuit is shorted to B+.
    [Show full text]