Aspects of the Accumulation of Cobalt, Copper and Nickel by Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Impact of Fire on the Natural Regeneration of Woody Species in Dry and Wet Miombo Woodland
Investigating the impact of fire on the natural regeneration of woody species in dry and wet Miombo woodland by Paul Mwansa Thesis presented in fulfilment of the requirements for the degree of Master of Science of Forestry and Natural Resource Science in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof Ben du Toit Co-supervisor: Dr Vera De Cauwer March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract The miombo woodland is an extensive tropical seasonal woodland and dry forest formation in extent of 2.7 million km². The woodland contributes highly to maintenance and improvement of people’s livelihood security and stable growth of national economies. The woodland faces a wide range of disturbances including fire that affect vegetation structure. An investigation into the impact of fire on the natural regeneration of six tree species was conducted along a rainfall gradient. Baikiaea plurijuga, Burkea africana, Guibourtia coleosperma, Pterocarpus angolensis, Schinziophyton rautanenii and Terminalia sericea were selected on basis of being an important timber and/or utilitarian species, and the assumed abundance. The objectives of the study were to examine floristic composition, density and composition of natural regeneration; stand structure and vegetation cover within recently burnt (RB) and recently unburnt (RU) sections of the forest. -
Las Labiadas (Lamiaceae) De Guinea Ecuatorial
Anales del Jardín Botánico de Madrid Vol. 68(2): 199-223 julio-diciembre 2011 ISSN: 0211-1322 doi: 10.3989/ajbm.2288 Las labiadas (Lamiaceae) de Guinea Ecuatorial por R. Morales Real Jardín Botánico, CSIC, Plaza de Murillo 2, E-28014 Madrid, España. [email protected] Resumen Abstract Morales, R. 2011. Las labiadas (Lamiaceae) de Guinea Ecuato- Morales, R. 2011. Labiates (Lamiaceae) from Equatorial Guinea. rial. Anales Jard. Bot. Madrid 68(2): 199-223. Anales Jard. Bot. Madrid 68(2): 199-223 (in Spanish). Se estudian e identifican 223 colecciones de plantas vasculares The identification of 223 collections of the Lamiaceae family, que corresponden a 14 géneros y 28 especies pertenecientes a from Bioko island, Rio Muni (Equatorial Guinea mainland) and la familia Lamiaceae procedentes de las islas de Bioko, Annobón Annobon, corresponding to 14 genera and 28 species, is pre- y Río Muni (Guinea Ecuatorial continental). Se incluye una clave sented. A key of genera and, in each genus, a key of species are de géneros y en cada género, si ha lugar, clave de especies. Se included. The basionym and type material, a brief description, citan de cada especie su basiónimo y material tipo, se incluyen the known chromosomic numbers, the distribution area and una breve descripción y números cromosomáticos, área de dis- some known popular uses from each species, also included are tribución y usos populares conocidos. Se aportan fotografías photographs of sheets and distribution maps. Some biogeo- de pliegos y mapas de distribución. Se discuten aspectos bio- graphical aspects about the generic and specific distribution in geográficos dentro de la distribución genérica y específica en el the studied area are discussed. -
Status, Trends and Future Dynamics of Biodiversity and Ecosystems Underpinning Nature’S Contributions to People 1
CHAPTER 3 . STATUS, TRENDS AND FUTURE DYNAMICS OF BIODIVERSITY AND ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS TO PEOPLE 1 CHAPTER 2 CHAPTER 3 STATUS, TRENDS AND FUTURE DYNAMICS CHAPTER OF BIODIVERSITY AND 3 ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS CHAPTER TO PEOPLE 4 Coordinating Lead Authors Review Editors: Marie-Christine Cormier-Salem (France), Jonas Ngouhouo-Poufoun (Cameroon) Amy E. Dunham (United States of America), Christopher Gordon (Ghana) 3 CHAPTER This chapter should be cited as: Cormier-Salem, M-C., Dunham, A. E., Lead Authors Gordon, C., Belhabib, D., Bennas, N., Dyhia Belhabib (Canada), Nard Bennas Duminil, J., Egoh, B. N., Mohamed- (Morocco), Jérôme Duminil (France), Elahamer, A. E., Moise, B. F. E., Gillson, L., 5 Benis N. Egoh (Cameroon), Aisha Elfaki Haddane, B., Mensah, A., Mourad, A., Mohamed Elahamer (Sudan), Bakwo Fils Randrianasolo, H., Razaindratsima, O. H., Eric Moise (Cameroon), Lindsey Gillson Taleb, M. S., Shemdoe, R., Dowo, G., (United Kingdom), Brahim Haddane Amekugbe, M., Burgess, N., Foden, W., (Morocco), Adelina Mensah (Ghana), Ahmim Niskanen, L., Mentzel, C., Njabo, K. Y., CHAPTER Mourad (Algeria), Harison Randrianasolo Maoela, M. A., Marchant, R., Walters, M., (Madagascar), Onja H. Razaindratsima and Yao, A. C. Chapter 3: Status, trends (Madagascar), Mohammed Sghir Taleb and future dynamics of biodiversity (Morocco), Riziki Shemdoe (Tanzania) and ecosystems underpinning nature’s 6 contributions to people. In IPBES (2018): Fellow: The IPBES regional assessment report on biodiversity and ecosystem services for Gregory Dowo (Zimbabwe) Africa. Archer, E., Dziba, L., Mulongoy, K. J., Maoela, M. A., and Walters, M. (eds.). CHAPTER Contributing Authors: Secretariat of the Intergovernmental Millicent Amekugbe (Ghana), Neil Burgess Science-Policy Platform on Biodiversity (United Kingdom), Wendy Foden (South and Ecosystem Services, Bonn, Germany, Africa), Leo Niskanen (Finland), Christine pp. -
Guidelines for Using the Checklist
Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals. -
Seasonal and Spatial Variations in Biogenic Hydrocarbon Emissions from Southern African Savannas and Woodlands L.B
Atmospheric Environment 36 (2002) 4265–4275 Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands L.B. Ottera,*, A. Guentherb, J. Greenbergb a Climatology Research Group, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa b National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80307-3000, USA Received 12 October 2001; received in revised form 22 April 2002; accepted 10 May 2002 Abstract Biogenic volatile organic carbon (BVOC) emissions are an important component of the global BVOC budget, contributing more than 90%. Emissions vary with species and vegetation type; therefore to produce accurate global budgets data is required from different vegetation types. This study investigates BVOC emissions from savannas, Kalahari woodlands, Kalahari open shrublands and Mopane woodlands in southern Africa. BVOC emission samples from individual species were collected using leaf cuvettes and the BVOC concentrations were determined by GC-FID/ MS. Ten of the 14 woodland species measured were high isoprene emitters, while two showed high monoterpene emission capacities. Landscape average isoprene emission capacities were estimated to be as high as 9, 8 and 1 mg CmÀ2 hÀ1 for savannas, woodlands and shrub lands, respectively. The monoterpene emission capacity for Mopane woodlands were estimated at almost 3 mg C mÀ2 hÀ1, while for other landscapes it varied between 0.04 and 3 mg CmÀ2 hÀ1. Isoprene and monoterpene emissions at a savanna site in South Africa showed a seasonal variation, which is more pronounced for isoprene. During the winter (June–September) estimated emissions were o10 mg C mÀ2 dÀ1, with peak emissions (ranging between 20 and 80 mg C mÀ2 dÀ1) occurring during the summer months (December–March) when foliar density peaked. -
Dicoma Anomala Sond.: a Review of Its Botany, Ethnomedicine, Phytochemistry and Pharmacology
Online - 2455-3891 Vol 11, Issue 6, 2018 Print - 0974-2441 Review Article DICOMA ANOMALA SOND.: A REVIEW OF ITS BOTANY, ETHNOMEDICINE, PHYTOCHEMISTRY AND PHARMACOLOGY ALFRED MAROYI* Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: [email protected] Received: 28 February 2018, Revised and Accepted: 20 March 2018 ABSTRACT Dicoma anomala is used as herbal medicine to treat and manage fever, coughs, colds, sore throats, abdominal pain, diarrhea, dysentery, constipation, intestinal worms, and sexually transmitted infections in tropical Africa. The aim of this study was to summarize the research that has been done on the ethnomedicinal uses, phytochemistry, and pharmacological properties of D. anomala in tropical Africa. The literature search for information on ethnomedicinal uses and pharmacological activities of D. anomala was undertaken using databases such as Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central, PubMed, and Springer link. Other relevant literature sources included books, book chapters, websites, theses, conference papers, and other scientific publications. This study showed that D. anomala is used as herbal medicine in 57.1% of the countries in tropical Africa where it is indigenous. The species is used to treat 66 and five human and animal diseases, respectively. Several classes of secondary metabolites including acetylenic compounds, diterpene, flavonoids, phenols, phytosterols, saponins, sesquiterpenes, tannins and triterpenes have been isolated from D. anomala. Different aqueous and organic extracts of D. anomala exhibited anthelmintic, anticancer, antihyperglycemic, anti-inflammatory, antimicrobial, antioxidant, antiplasmodial, and hepatoprotective activities. The documented information on the botany, ethnomedicinal uses, phytochemistry, and pharmacological properties of D. -
Download This Article As
Int. J. Curr. Res. Biosci. Plant Biol. (2019) 6(10), 33-46 International Journal of Current Research in Biosciences and Plant Biology Volume 6 ● Number 10 (October-2019) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2019.610.004 Some new combinations and new names for Flora of India R. Kottaimuthu1*, M. Jothi Basu2 and N. Karmegam3 1Department of Botany, Alagappa University, Karaikudi-630 003, Tamil Nadu, India 2Department of Botany (DDE), Alagappa University, Karaikudi-630 003, Tamil Nadu, India 3Department of Botany, Government Arts College (Autonomous), Salem-636 007, Tamil Nadu, India *Corresponding author; e-mail: [email protected] Article Info ABSTRACT Date of Acceptance: During the verification of nomenclature in connection with the preparation of 17 August 2019 ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, the authors came across a number of names that need to be updated in accordance with the Date of Publication: changing generic concepts. Accordingly the required new names and new combinations 06 October 2019 are proposed here for the 50 taxa belonging to 17 families. Keywords Combination novum Indian flora Nomen novum Tamil Nadu Introduction Taxonomic treatment India is the seventh largest country in the world, ACANTHACEAE and is home to 18,948 species of flowering plants (Karthikeyan, 2018), of which 4,303 taxa are Andrographis longipedunculata (Sreem.) endemic (Singh et al., 2015). During the L.H.Cramer ex Gnanasek. & Kottaim., comb. nov. preparation of ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, we came Basionym: Neesiella longipedunculata Sreem. -
Late Pleistocene Molecular Dating of Past Population Fragmentation And
Journal of Biogeography (J. Biogeogr.) (2015) 42, 1443–1454 ORIGINAL Late Pleistocene molecular dating of ARTICLE past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis Jerome^ Duminil1,2*, Stefano Mona3, Patrick Mardulyn1, Charles Doumenge4, Frederic Walmacq1, Jean-Louis Doucet5 and Olivier J. Hardy1 1Evolutionary Biology and Ecology, Universite ABSTRACT Libre de Bruxelles, 1050 Brussels, Belgium, Aim Phylogeographical signatures of past population fragmentation and 2Bioversity International, Forest Genetic demographic change have been reported in several African rain forest trees. Resources Programme, Sub-Regional Office for Central Africa, Yaounde, Cameroon, 3Institut These signatures have usually been interpreted in the light of the Pleistocene de Systematique, Evolution, Biodiversite forest refuge hypothesis, although dating these events has remained impractica- ISYEB – UMR 7205 – CNRS, MNHN, ble because of inadequate genetic markers. We assess the timing of interspecific UPMC, EPHE Ecole Pratique des Hautes and intraspecific genetic differentiation and demographic changes within two Etudes, Sorbonne Universites, Paris, France, rain forest Erythrophleum tree species (Fabaceae: Caesalpinioideae). 4 CIRAD, UR B&SEF, Campus International Location Tropical forests of Upper Guinea (West Africa) and Lower Guinea de Baillarguet TA-C-105/D, F-34398 (Atlantic Central Africa). Montpellier cedex 5, France, 5Laboratoire de Foresterie des Regions Tropicales et Methods Six single-copy -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
(Asteraceae): a Relict Genus of Cichorieae?
Anales del Jardín Botánico de Madrid Vol. 65(2): 367-381 julio-diciembre 2008 ISSN: 0211-1322 Warionia (Asteraceae): a relict genus of Cichorieae? by Liliana Katinas1, María Cristina Tellería2, Alfonso Susanna3 & Santiago Ortiz4 1 División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 2 Laboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 3 Instituto Botánico de Barcelona, Pg. del Migdia s.n., 08038 Barcelona, Spain. [email protected] 4 Laboratorio de Botánica, Facultade de Farmacia, Universidade de Santiago, 15782 Santiago de Compostela, Spain. [email protected] Abstract Resumen Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia (Asteraceae): a relict genus of Cichorieae? Anales Jard. Bot. Ma- (Asteraceae): un género relicto de Cichorieae? Anales Jard. Bot. drid 65(2): 367-381. Madrid 65(2): 367-381 (en inglés). The genus Warionia, with its only species W. saharae, is endemic to El género Warionia, y su única especie, W. saharae, es endémico the northwestern edge of the African Sahara desert. This is a some- del noroeste del desierto africano del Sahara. Es una planta seme- what thistle-like aromatic plant, with white latex, and fleshy, pin- jante a un cardo, aromática, con látex blanco y hojas carnosas, nately-partite leaves. Warionia is in many respects so different from pinnatipartidas. Warionia es tan diferente de otros géneros de any other genus of Asteraceae, that it has been tentatively placed Asteraceae que fue ubicada en las tribus Cardueae, Cichorieae, in the tribes Cardueae, Cichorieae, Gundelieae, and Mutisieae. -
Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers. -
How Changing Fire Management Policies Affect Fire Seasonality and Livelihoods”
AMBIO Electronic Supplementary Material This supplementary material has not been peer reviewed. Title: “How changing fire management policies affect fire seasonality and livelihoods”. Table S1 Timeline of historical events affecting the Khwe, Mbukushu and the Government of the Republic of Namibia (GRN) in Bwabwata National Park (1795 – 2016). Year/s Historical event Prehistoric period Presence of hunter-gatherer cultures [San] in the region 1795 -1800 Arrival of Bantu-speaking tribes in the region1 Khwe were subject to slave raids that extended from the Angolan coast to northern 1830 Namibia2 1840 -1850s First recorded encounters of the Khwe with Europeans3 First map produced of north-east Namibia by the Swedish hunter and explorer, Sir Charles 1852 John Andersson4 1850s Settlement of Mbukushu along the Kwando and Okavango Rivers in West Caprivi Establishment of Namibia as a German Protectorate (Deutsch Sudwestafrika) as German 1884 South West Africa (SWA) 5 Hunter-gather societies were exposed to Bantu tribes and introduced to stock farming and 1900s agriculture Delineation of Germany's northern boundaries in an agreement called the Portuguese- 1886 German Convention drawn up between Portugal (Angolan colony) and Germany Banning of all fires by law under the German Colony of South West Africa (Deutsche 1888 Kolonialgesellshaft für Südwestafrika) West Caprivi under the jurisdiction of German administration through an agreement, the 1890 Anglo-German Agreement was signed between Britain and Germany Rinderpest epidemic affects wildlife and